Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | WPRIM | ID: wpr-1041060

ABSTRACT

Objective@#Fenbendazole (FZ) has potential anti-cancer effects, but its poor water solubility limits its use for cancer therapy. In this study, we investigated the anti-cancer effect of FZ with different drug delivery methods on epithelial ovarian cancer (EOC) in both in vitro and in vivo models. @*Methods@#EOC cell lines were treated with FZ and cell proliferation was assessed. The effect of FZ on tumor growth in cell line xenograft mouse model of EOC was examined according to the delivery route, including oral and intraperitoneal administration. To improve the systemic delivery of FZ by converting fat-soluble drugs to hydrophilic, we prepared FZ-encapsulated poly(D,L-lactide-co-glycolide) acid (PLGA) nanoparticles (FZ-PLGA-NPs). We investigated the preclinical efficacy of FZ-PLGA-NPs by analyzing cell proliferation, apoptosis, and in vivo models including cell lines and patient-derived xenograft (PDX) of EOC. @*Results@#FZ significantly decreased cell proliferation of both chemosensitive and chemoresistant EOC cells. However, in cell line xenograft mouse models, there was no effect of oral FZ treatment on tumor reduction. When administered intraperitoneally, FZ was not absorbed but aggregated in the intraperitoneal space. We synthesized FZ-PLGA-NPs to obtain water solubility and enhance drug absorption. FZ-PLGA-NPs significantly decreased cell proliferation in EOC cell lines. Intravenous injection of FZ-PLGA-NP in xenograft mouse models with HeyA8 and HeyA8-MDR significantly reduced tumor weight compared to the control group. FZ-PLGA-NPs showed anti-cancer effects in PDX model as well. @*Conclusion@#FZ-incorporated PLGA nanoparticles exerted significant anti-cancer effects in EOC cells and xenograft models including PDX. These results warrant further investigation in clinical trials.

2.
Immune Network ; : 177-183, 2013.
Article in English | WPRIM | ID: wpr-223726

ABSTRACT

Development of nano-sized carriers including nanoparticles, nanoemulsions or liposomes holds great potential for advanced delivery systems for cancer immunotherapy, as such nanostructures can be used to more effectively manipulate or deliver immunologically active components to specific target sites. Successful development of nanotechnology based platform in the field of immunotherapy will allow the application of vaccines, adjuvants and immunomodulatory drugs that improve clinical outcomes for immunological diseases. Here, we review current nanoparticle-based platforms in the efficacious delivery of vaccines in cancer immunotherapy.


Subject(s)
Immune System Diseases , Immunotherapy , Liposomes , Nanoparticles , Nanostructures , Nanotechnology , Vaccines
3.
Chinese Journal of Cancer ; (12): 368-370, 2011.
Article in English | WPRIM | ID: wpr-294511

ABSTRACT

MicroRNAs (miRNAs) are a class of highly abundant non-coding RNA molecules that are involved in several biological processes. Many miRNAs are often deregulated in several diseases including cancer. There is substantial interest in exploiting miRNAs for therapeutic applications. In this editorial, we briefly review current advances in the use of miRNAs or antisense oligonucleotides (antagomirs) for such therapies. One of the key issues related to therapy using miRNAs is degradation of naked particles in vivo. To overcome this limitation, delivery systems for miRNA-based therapeutic agents have been developed, which hold tremendous potential for improving therapeutic outcome of cancer patients.


Subject(s)
Humans , Drug Delivery Systems , Methods , Gene Expression Regulation, Neoplastic , Genetic Therapy , MicroRNAs , Genetics , Metabolism , Therapeutic Uses , Neoplasms , Genetics , Metabolism , Therapeutics , Oligonucleotides, Antisense , Therapeutic Uses
SELECTION OF CITATIONS
SEARCH DETAIL