ABSTRACT
OBJECTIVE@#To explore whether the using of mimetic peptide Gap27, a selective inhibitor of connexin 43 (Cx43), could block the death of dopamine neurons and influence the expression of Cx43 in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease mouse models.@*METHODS@#Eighteen C57BL/6 mice were randomly divided into control group, 6-OHDA group and 6-OHDA+Gap27 group, with 6 mice in each group. Bilateral substantia nigra stereotactic injection was performed. The control group was injected with ascorbate solution, 6-OHDA group was injected with 6-OHDA solution, and 6-OHDA+Gap27 group was injected with 6-OHDA and Gap27 mixed solution. Immuno-histochemical staining was used to detect the number of dopamine neurons, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of Cx43 messenger ribonucleic acid (mRNA), immuno-fluorescence staining was used to detect the distribution of Cx43 protein, the contents of Cx43 protein and Cx43 phosphorylation at serine 368 (Cx43-ps368) in mouse midbrain were detected by Western blot.@*RESULTS@#After injection of 6-OHDA, numerous dopamine neurons in substantia nigra died as Cx43 content increased, Cx43-ps368 content decreased. Mixing Gap27 while injecting 6-OHDA could reduce the number of death dopamine neurons and weaken the changes of Cx43 and Cx43-ps368 content caused by 6-OHDA. The number of tyrosine hydroxylase (TH) immunoreactive positive neurons in 6-OHDA group decreased to 27.7% ± 0.02% of the control group (P < 0.01); The number of TH immunoreactive positive neurons in 6-OHDA+Gap27 group was (1.64±0.16) times higher than that in 6-OHDA group (P < 0.05); The content of total Cx43 protein in 6-OHDA group was (1.44±0.07) times higher than that in 6-OHDA+Gap27 group (P < 0.05) while (1.68±0.07) times higher than that in control group (P < 0.01). In 6-OHDA group, the content of Cx43-ps368 protein and its proportion in total Cx43 protein were significantly lower than that in 6-OHDA+Gap27 group (P < 0.05).@*CONCLUSION@#In 6-OHDA mouse models, mimetic peptide Gap27 played a protective role in reducing the damage to substantia nigra dopamine neurons, which was induced by 6-OHDA. The overexpression of Cx43 protein might have neurotoxicity to dopamine neuron. Meanwhile, decreasing Cx43 protein level and keeping Cx43-ps368 protein level may be the protective mechanisms of Gap27.
Subject(s)
Animals , Mice , Connexin 43/pharmacology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Mice, Inbred C57BL , Oxidopamine/metabolism , Parkinson Disease/metabolism , Peptides/pharmacology , Tyrosine 3-Monooxygenase/pharmacologyABSTRACT
OBJECTIVE@#To analyze the effect of benzopyrene on the decrease of dopaminergic neurons, and the increase and aggregation of α-synuclein, which are the pathological features of Parkinson's disease, and to explore its possible mechanisms.@*METHODS@#Eight-month-old transgenic mice with human SNCA gene were randomly divided into a BaP-exposed group and a control group. BaP and solvent corn oil were injected intraperitoneally to BaP-exposed group and control group respectively, once a day for 60 days. The motor dysfunction of mice was tested by rotarod test. The effects of BaP on the decrease of dopaminergic neurons and increase and aggregation of α-synuclein were observed by immunohistochemistry and Western blot experiments respectively, and the expression of related mRNA was detected by quantitative real-time PCR (qRT-PCR). Twenty genes were tested in the study, mainly related to neurotransmitter transporter (2 genes), neurotransmitter receptor function (10 genes), cellular autophagy (5 genes), and α-synuclein aggregation and degradation (3 genes).@*RESULTS@#After BaP exposure, the movement time of the mice in the rotarod test was significantly reduced (P<0.05). The substantia nigra dopami-nergic neurons in the mice were significantly reduced, which was 62% of the control group (P<0.05), and the expression of α-synuclein in the midbrain increased, which was 1.36 times that of the control group (P<0.05). After BaP exposure, mRNA expressions of 14 genes in the midbrain of the mice were significantly down-regulated (P<0.05). Alpha-synuclein degradation and cell autophagy (5 genes), neuron transporters (2 genes), and neurotransmitter receptor functions (5 genes) were involved. The expression of one gene, Synphilin-1, was significantly up-regulated (P<0.01), which was related to α-synuclein aggregation.@*CONCLUSION@#BaP exposure not only inhibited function of neurotransmitter receptor and dopamine transporter, but also interfered cell autophagy, thereby hindering the degradation of α-synuclein, which could lead to decrease of dopaminergic neurons in substantia nigra and increase and aggregation of α-synuclein in midbrain, as the significant pathology of Parkinson's disease. Therefore, BaP exposure may increase the risk of Parkinson's disease.