Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | WPRIM | ID: wpr-1043911

ABSTRACT

Background/Aims@#Motility disorders are prevalent, often leading to disrupted regional or whole gut transit times. In this study, we conducted a comparative analysis between the wireless motility capsule and an innovative gas-sensing capsule to evaluate regional and whole gut transit times in individuals with diagnosed motility disorders. @*Methods@#We prospectively enrolled 48 patients (34 women) diagnosed with functional dyspepsia and/or functional constipation according to Rome IV criteria. Patients ingested the capsules in tandem. We assessed the agreement between transit times recorded by both devices using Spearman correlation and Bland-Altman analysis. Additionally, diagnostic concordance between the capsules were evaluated using confusion matrices. @*Results@#We observed a significant correlation between the wireless motility capsule and the gas-sensing capsule for gastric emptying time (r = 0.79, P 59 hours), the gas-sensing capsule demonstrated a sensitivity of 0.79, specificity of 0.84, and accuracy of 0.82. Importantly, the gas-sensing capsule was well-tolerated, and no serious adverse events were reported during the study. @*Conclusions@#Our findings underscore the gas-sensing capsule’s suitability as a dependable tool for assessing regional and whole gut transit times.It represents a promising alternative to the wireless motility capsule for evaluating patients with suspected motility disorders.

2.
Article in English | WPRIM | ID: wpr-1001404

ABSTRACT

Background/Aims@#Interstitial cells of Cajal (ICC) are specialized gastrointestinal (GI) pacemaker cells required for normal GI motility. Dysfunctions in ICC have been reported in patients with GI motility disorders, such as gastroparesis, who exhibit debilitating symptoms and greatly reduced quality of life. While the proteins, calcium-activated chloride channel anoctamin-1 (ANO1) and the receptor tyrosine kinase (KIT), are known to be expressed by human ICC, relatively little is known about the broad molecular circuitry underpinning human ICC functions. The present study therefore investigates the transcriptome and proteome of ANO1-expressing, KIT low /CD45- /CD11B- ICC obtained from primary human gastric tissue. @*Methods@#Excess human gastric tissue resections were obtained from sleeve gastrectomy patients. ICC were purified using fluorescence-activated cell sorting (FACSorting). Then, ICC were characterized by using immunofluorescence, real-time polymerase chain reaction, RNAsequencing and mass spectrometry. @*Results@#Compared to unsorted cells, real-time polymerase chain reaction showed the KIT low /CD45- /CD11B- ICC had: a 9-fold (P 10-fold, P 4-fold, P < 0.05). RNA-sequencing and gene ontology analyses of the KIT low / CD45- /CD11B- cells revealed a transcriptional profile consistent with ICC function. Similarly, mass spectrometry analyses of the KIT low / CD45- /CD11B - cells presented a proteomic profile consistent with ICC activities. STRING-based protein interaction analyses using the RNA-sequencing and proteomic datasets predicted protein networks consistent with ICC-associated pacemaker activity and ion transport. @*Conclusion@#These new and complementary datasets provide a valuable molecular framework for further understanding how ICC pacemaker activity regulates smooth muscle contraction in both normal GI tissue and GI motility disorders.

SELECTION OF CITATIONS
SEARCH DETAIL