Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
2.
Article in English | WPRIM | ID: wpr-185403

ABSTRACT

PURPOSE: This study was performed to evaluate the characteristics of rat mesenchymal stem cells (RMSCs) transduced with human ferritin gene and investigate in vitro MRI detectability of ferritin-transduced RMSCs. MATERIALS AND METHODS: The RMSCs expressing both myc-tagged human ferritin heavy chain subunit (myc-FTH) and green fluorescence protein (GFP) were transduced with lentiviurs. Transduced cells were sorted by GFP expression using a fluorescence-activated cell sorter. Myc-FTH and GFP expression in transduced cells were detected by immunofluorescence staining. The cell proliferative ability and viability were assessed by MTT assay. The RMSC surface markers (CD29+/CD45-) were analyzed by flow cytometry. The intracellular iron amount was measured spectrophotometically and the presence of ferritin-iron accumulation was detected by Prussian blue staining. In vitro magnetic resonance imaging (MRI) study of cell phantoms was done on 9.4 T MR scanner to evaluate the feasibility of imaging the ferritin-transduced RMSCs. RESULTS: The myc-FTH and GFP genes were stably transduced into RMSCs. No significant differences were observed in terms of biologic properties in transduced RMSCs compared with non-transduced RMSCs. Ferritin-transduced RMSCs exhibited increased iron accumulation ability and showed significantly lower T2 relaxation time than non-transduced RMSCs. CONCLUSION: Ferritin gene as MR reporter gene could be used for non-invasive tracking and visualization of therapeutic mesenchymal stem cells by MRI.


Subject(s)
Animals , Humans , Rats , Apoferritins , Ferritins , Ferrocyanides , Flow Cytometry , Fluorescence , Fluorescent Antibody Technique , Genes, Reporter , Iron , Magnetic Resonance Imaging , Mesenchymal Stem Cells , Relaxation , Track and Field
3.
Article in English | WPRIM | ID: wpr-147614

ABSTRACT

Latent transforming growth factor (TGF)-beta-binding protein (LTBP) is required for the assembly, secretion, matrix association, and activation of latent TGF-beta complex. To elucidate the cell specific expression of the genes of LTBP-1 and their splice variants and the factors that regulate the gene expression, we cultured primary human glomerular endothelial cells (HGEC) under different conditions. Basal expression of LTBP-1 mRNA was suppressed in HGEC compared to WI-38 human embryonic lung fibroblasts. High glucose, H2O2, and TGF-beta1 upregulated and vascular endothelial growth factor (VEGF) further downregulated LTBP-1 mRNA in HGEC. RT-PCR with a primer set for LTBP-1S produced many clones but no clone was gained with a primer set for LTBP-1L. Of 12 clones selected randomly, Sca I mapping and DNA sequencing revealed that only one was LTBP-1S and all the others were LTBP-1S delta 53. TGF-beta1, but not high glucose, H2O2 or VEGF, tended to increase LTBP-1S delta 53 mRNA. In conclusion, HGEC express LTBP-1 mRNA which is suppressed at basal state but upregulated by high glucose, H2O2, and TGF-beta1 and downregulated by VEGF. Major splice variant of LTBP-1 in HGEC was LTBP-1S delta 53. Modification of LTBP-1S delta 53 gene in HGEC may abrogate fibrotic action of TGF-beta1 but this requires confirmation.


Subject(s)
Humans , Alternative Splicing , Amino Acid Sequence , Cell Line , Cells, Cultured , Cloning, Molecular , Comparative Study , Endothelial Cells/drug effects , Gene Expression Regulation , Glucose/pharmacology , Hydrogen Peroxide/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Kidney Glomerulus/cytology , Protein Isoforms/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Transfection , Transforming Growth Factor beta/pharmacology , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL