Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 229-234, 2007.
Article in Chinese | WPRIM | ID: wpr-325388

ABSTRACT

This study mainly deals with cell transfection and cytotoxicity for PEI(10kD)-PBLG, a novel cationic copolymer, to observe its potential as a gene carrier. Size measurement and SEM were used to show the modality of the PEI-PBLG/pDNA complexes. Cytotoxicity of PEI (10kD)-PBLG was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay and compared with PEI(25kD)-PBLG, PEI(10kD), and PEI(25kD). Furthermore, pEGFP that can express the enhanced green fluorescent protein was chosen as a reporter to observe the transfection efficiency directly. Then, PEI (10kD)-PBLG/pEGFP complexes were transfected into several cell lines, such as Hela, COS-7, Vero-E6, and ECV-304, and effects of the transfection conditions were evaluated. The efficiencies were measured by FACS. Size measurement of complex particles indicated that PEI-PBLG/pDNA tended to form smaller nanoparticles compared with PEI/pDNA. The representative size of the PEI(10kD)-PBLG/pDNA complex was approximately 100 - 200 nm. SEM images showed that the particles were condense and compact. This can be suitable for their entry into cells. Cytotoxicity studies suggested that PEI (10kD)-PBLG had considerably lower toxicity than the other three materials. In the transfection tests, PEI (10kD)-PBLG/pDNA complexes could be transfected into all the cell lines that were tested. These provided the highest level of EGFP expression (45.02%) in Hela cells, which was considerably higher than that of PEI(10kD)/pEGFP (29.16%). Being less affected by the serum during transfection, PEI-PBLG/pDNA complexes offered greater biocompatibility than PEI. PEI-PBLG copolymer reduces the cytotoxicity of PEI, improves the transfection efficiency, and offers greater biocompatibility than PEI. It shows considerable potential as an efficient nonviral carrier for gene delivery.


Subject(s)
Animals , Humans , COS Cells , Cell Line , Cell Survival , Chlorocebus aethiops , DNA , Chemistry , Genetics , Flow Cytometry , Green Fluorescent Proteins , Genetics , Metabolism , HeLa Cells , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Molecular Weight , Plasmids , Chemistry , Genetics , Polyethyleneimine , Chemistry , Pharmacology , Polyglutamic Acid , Chemistry , Pharmacology , Transfection , Methods , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL