Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article in English | WPRIM | ID: wpr-758769

ABSTRACT

Focal vertebral bone density changes were assessed in vertebral computed tomography (CT) images obtained from clinically healthy dogs without diseases that affect bone density. The number, location, and density of lesions were determined. A total of 429 vertebral CT images from 20 dogs were reviewed, and 99 focal vertebral changes were identified in 14 dogs. Focal vertebral bone density changes were mainly found in thoracic vertebrae (29.6%) as hyperattenuating (86.9%) lesions. All focal vertebral changes were observed at the vertebral body, except for a single hyperattenuating change in one thoracic transverse process. Among the hyperattenuating changes, multifocal changes (53.5%) were more common than single changes (46.5%). Most of the hypoattenuating changes were single (92.3%). Eight dogs, 40% of the 20 dogs in the study and 61.6% of the 13 dogs showing focal vertebral changes in the thoracic vertebra, had hyperattenuating changes at the 7th or 8th thoracic vertebra. Our results indicate that focal changes in vertebral bone density are commonly identified on vertebral CT images in healthy dogs, and these changes should be taken into consideration on interpretation of CT images.


Subject(s)
Animals , Dogs , Bone Density , Spine , Thoracic Vertebrae
2.
Article in English | WPRIM | ID: wpr-16833

ABSTRACT

This study evaluated whether renal perfusion changes can be noninvasively estimated by using contrast-enhanced ultrasonography (CEUS) in renal ischemia-reperfusion injury and investigated the correlation between renal perfusion measured by CEUS and necrosis and apoptosis of renal tubular epithelial cells. In six dogs with experimentally induced renal ischemia-reperfusion injury, changes in time to peak intensity, peak intensity, and area under the curve were measured on CEUS. Peak intensity and area under the curve of the renal cortex began to decrease on day 1 (about 20% lower than baseline) and reached the lowest levels (about 50% of baseline) on day 4. They then gradually increased until day 10, at which time peak intensity was about 87% and area under the curve was about 95% of baseline; neither fully recovered. Both parameters were strongly correlated with the necrosis scores on histopathologic examination on day 4 (r = −0.810 of peak intensity and r = −0.886 of area under the curve). CEUS allowed quantitative evaluation of perfusion changes in acute renal ischemia-reperfusion injury, and CEUS results were correlated with renal tubular damage on histopathologic examination. Thus, CEUS could be a noninvasive, quantitative diagnostic method for determining progress of renal ischemia-reperfusion injury.


Subject(s)
Animals , Dogs , Apoptosis , Epithelial Cells , Evaluation Studies as Topic , Methods , Necrosis , Perfusion , Reperfusion Injury , Ultrasonography
3.
Laboratory Animal Research ; : 309-316, 2011.
Article in English | WPRIM | ID: wpr-45071

ABSTRACT

Magnetic resonance imaging (MRI) of six Yukatan minipig brains was performed. The animals were placed in stereotaxic conditions currently used in experiments. To allow for correctpositioning of the animal in the MRI instrument, landmarks were previously traced on the snout of the pig. To avoid movements, animal were anesthetized. The animals were placed in a prone position in a Siemens Magnetom Avanto 1.5 System with a head coil. Axial T2-weighted and sagittal T1-weighted MRI images were obtained from each pig. Afterwards, the brains of the pigs were fixed and cut into axial sections. Histologic and MR images were compared. The usefulness of this technique is discussed.


Subject(s)
Animals , Brain , Head , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Magnetics , Magnets , Nervous System Diseases , Prone Position , Swine , Swine, Miniature
4.
Article in Korean | WPRIM | ID: wpr-105064

ABSTRACT

The purpose of this study was to evaluate the effect of the polymerization shrinkage and modulus of elasticity of composites on the cusp deflection of class V restoration in premolars. The sixteen extracted upper premolars were divided into 2 groups with similar size. The amounts of cuspal deflection were measured in Class V cavities restored with a flowable composite (Filtek flow) or a universal hybrid composite (Z-250). The bonded interfaces of the sectioned specimens were observed using a scanning electron microscopy (SEM). The polymerization shrinkage and modulus of elasticity of the composites were measured to find out the effect of physical properties of composite resins on the cuspal deflection. The results were as follows. 1. The amounts of cuspal deflection restored with Filtek flow or Z-250 were 2.18 +/- 0.92 microm and 2.95 +/- 1.13 microm, respectively. Filtek flow showed less cuspal deflection but there was no statistically significant difference (p > 0.05). 2. The two specimens in each group showed gap at the inner portion of the cavity. 3. The polymerization shrinkages of Filtek flow and Z-250 were 4.41% and 2.23% respectively, and the flexural modulus of elasticity of cured Filtek flow (7.77 GPa) was much lower than that of Z-250 (17.43 GPa). 4. The cuspal deflection depends not only on the polymerization shrinkage but also on the modulus of elasticity of composites.


Subject(s)
Bicuspid , Chimera , Collodion , Composite Resins , Elastic Modulus , Microscopy, Electron, Scanning , Polymerization , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL