Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Article in Chinese | WPRIM | ID: wpr-1028776

ABSTRACT

AIM To study the chemical constituents from the leaves of Cyanocarya paliurus(Batalin)Iljinskaja and their α-glucosidase inhibitory activities.METHODS The 95%ethanol extract from the leaves of C.paliurus was isolated and purified by macroporous resin,silica gel,Sephadex LH-20,polyamide,C18 reversed-phase silica gel and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.Their α-glucosidase inhibitory activities were evaluated by PNPG.RESULTS Fifteen compounds were isolated and identified as cyclopaloside C(1),cyclopaloside A(2),juglanosides E(3),vaccinin A(4),ent-murin A(5),kaempferol 3-O-α-L-rhamnopyranoside(6),kaempferol-3-O-β-D-glucopyranoside(7),kaempferol-3-O-β-D-glucuronide methyl ester(8),kaempferol-3-O-β-D-glucuronide ethyl ester(9),kaempferol-3-O-β-D-glucuronide butyl ester(10),quercetin-3-O-α-L-rhamnopyranoside(11)quercetin-3-O-β-D-glucopyranoside(12),quercetin-3-O-β-D-galactopyranoside(13),quercetin-3-O-β-D-glucuronide butyl ester(14),dihydrokaempferol(15).The IC50 value of total extracts ihibited α-glucosidase was(1.83±0.04)μg/mL,and the IC50 values of compounds 1,4-5 were(29.48±1.86),(0.50±0.07),(0.71±0.07)μmol/L,respectively.CONCLUSION Compound 1 is a new tetrahydronaphthalene glycoside.Compounds 4-5,8-10 and 14 are isolated from the leaves of C.paliurus for the first time.Compounds 4-5 are relatively rare flavonoid lignans with potential inhibitory activities against α-glucosidase.

2.
Article in English | WPRIM | ID: wpr-928602

ABSTRACT

OBJECTIVES@#To study the difference in intestinal flora between children with focal epilepsy and healthy children and the change in intestinal flora after treatment in children with epilepsy.@*METHODS@#A total of 10 children with newly diagnosed focal epilepsy were recruited as the case group and were all treated with oxcarbazepine alone. Their clinical data were recorded. Fecal specimens before treatment and after 3 months of treatment were collected. Fourteen aged-matched healthy children were recruited as the control group. Total bacterial DNA was extracted from the fecal specimens for 16S rDNA sequencing and bioinformatics analysis.@*RESULTS@#After 3 months of carbamazepine treatment, the seizure frequency was reduced by >50% in the case group. At the phylum level, the abundance of Actinobacteria in the case group before treatment was significantly higher than that in the control group (P<0.05), and it was reduced after treatment (P<0.05). At the genus level, the abundances of Escherichia/Shigella, Streptococcus, Collinsella, and Megamonas in the case group before treatment were significantly higher than those in the control group (P<0.05), and the abundances of these bacteria decreased significantly after treatment (P<0.05).@*CONCLUSIONS@#There is a significant difference in intestinal flora between children with focal epilepsy and healthy children. Oxcarbazepine can significantly improve the symptoms and intestinal flora in children with epilepsy.


Subject(s)
Aged , Child , Humans , Bacteria/genetics , DNA, Bacterial , Epilepsies, Partial/drug therapy , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL