Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Anatomy & Cell Biology ; : 44-54, 2014.
Article in English | WPRIM | ID: wpr-121385

ABSTRACT

The paracolpium or paravaginal tissue is surrounded by the vaginal wall, the pubocervical fascia and the rectovaginal septum (Denonvilliers' fascia). To clarify the configuration of nerves and fasciae in and around the paracolpium, we examined histological sections of 10 elderly cadavers. The paracolpium contained the distal part of the pelvic autonomic nerve plexus and its branches: the cavernous nerve, the nerves to the urethra and the nerves to the internal anal sphincter (NIAS). The NIAS ran postero-inferiorly along the superior fascia of the levator ani muscle to reach the longitudinal muscle layer of the rectum. In two nulliparous and one multiparous women, the pubocervical fascia and the rectovaginal septum were distinct and connected with the superior fascia of the levator at the tendinous arch of the pelvic fasciae. In these three cadavers, the pelvic plexus and its distal branches were distributed almost evenly in the paracolpium and sandwiched by the pubocervical and Denonvilliers' fasciae. By contrast, in five multiparous women, these nerves were divided into the anterosuperior group (bladder detrusor nerves) and the postero-inferior group (NIAS, cavernous and urethral nerves) by the well-developed venous plexus in combination with the fragmented or unclear fasciae. Although the small number of specimens was a major limitation of this study, we hypothesized that, in combination with destruction of the basic fascial architecture due to vaginal delivery and aging, the pelvic plexus is likely to change from a sheet-like configuration to several bundles.


Subject(s)
Aged , Female , Humans , Aging , Anal Canal , Autonomic Pathways , Cadaver , Fascia , Hypogastric Plexus , Muscles , Rectum , Urethra
2.
Anatomy & Cell Biology ; : 49-56, 2013.
Article in English | WPRIM | ID: wpr-122744

ABSTRACT

We examined a series of changes that occur in the trabecular meshwork fibers of human eyes during fetal development at 12-30 weeks of gestation. At 12 and 15 weeks, the uveal meshwork was stained black with silver impregnation (indicating the predominance of collagen types III and IV) in the endomysium of the ciliary muscle. At 20 weeks, in combination with Schlemm's canal, a dense fibrous tissue mass corresponding to the trabecular meshwork anlage appeared and was colored black. The anlage was continuous with the corneal endothelium rather than with the ciliary muscle. Until 25 weeks, the trabecular meshwork was identifiable as fragmented fiber bundles that stained red-black, suggesting a mixture of collagen types I, III, and IV. At 30 weeks, half of the ciliary muscle fibers were inserted into the scleral spur and not into the meshwork. Therefore, any contribution of ciliary muscle contraction to the differentiation of the trabecular meshwork would appear to be limited. We hypothesize that an uneven distribution of mechanical stresses in the area of the cornea-sclera junction causes a tear thereby creating Schlemm's canal and is accompanied by a change in the collagen fiber types comprising the meshwork.


Subject(s)
Humans , Pregnancy , Collagen , Endothelium, Corneal , Eye , Fetal Development , Muscle Contraction , Muscles , Silver , Silver Staining , Stress, Mechanical , Trabecular Meshwork
3.
Anatomy & Cell Biology ; : 272-284, 2013.
Article in English | WPRIM | ID: wpr-42209

ABSTRACT

Carbonic anhydrase type IX (CA9) is known to express in the fetal joint cartilage to maintain pH against hypoxia. Using paraffin-embedded histology of 10 human fetuses at 10-16 weeks of gestation with an aid of immunohistochemistry of the intermediate filaments, matrix components (collagen types I and II, aggrecan, versican, fibronectin, tenascin, and hyaluronan) and CA9, we observed all joints and most of the entheses in the body. At any stages examined, CA9-poisitive cells were seen in the intervertebral disk and all joint cartilages including those of the facet joint of the vertebral column, but the accumulation area was reduced in the larger specimens. Glial fibrillary acidic protein (GFAP), one of the intermediate filaments, expressed in a part of the CA9-positive cartilages. Developing elastic cartilages were positive both of CA9 and GFAP. Notably, parts of the tendon or ligament facing to the joint, such as the joint surface of the annular ligament of the radius, were also positive for CA9. A distribution of each matrix components examined was not same as CA9. The bone-tendon and bone-ligament interface expressed CA9, but the duration at a site was limited to 3-4 weeks because the positive site was changed between stages. Thus, in the fetal entheses, CA9 expression displayed highly stage-dependent and site-dependent manners. CA9 in the fetal entheses seemed to play an additional role, but it was most likely to be useful as an excellent marker of mechanical stress at the start of enthesis development.


Subject(s)
Humans , Pregnancy , Aggrecans , Hypoxia , Carbon , Carbonic Anhydrases , Cartilage , Elastic Cartilage , Fetal Development , Fetus , Fibronectins , Glial Fibrillary Acidic Protein , Hydrogen-Ion Concentration , Immunohistochemistry , Intermediate Filaments , Intervertebral Disc , Joints , Ligaments , Radius , Spine , Stress, Mechanical , Tenascin , Tendons , Versicans , Zygapophyseal Joint
4.
Yonsei med. j ; Yonsei med. j;: 398-406, 2010.
Article in English | WPRIM | ID: wpr-40403

ABSTRACT

PURPOSE: The purpose of this study is to provide better understanding as to how the "double" vascular arcades, in contrast to other intestinal marginal vessels, develop along the right margin of the pancreatic head. MATERIALS AND METHODS: In human fetuses between 8-30 weeks, we described the topographical anatomy of the vessels, bile duct, duodenum as well as the ventral and dorsal primordia of the pancreatic head with an aid of pancreatic polypeptide immunohisto-chemistry. RESULTS: The contents of the hepatoduodenal ligament crossed the superior side of the pylorus. Moreover, the right hepatic artery originating from the superior mesenteric artery ran along the superior aspect of the pancreatic head. An arterial arcade, corresponding to the posterior pancreaticoduodenal arteries, encircled the superior part of the pancreatic head, whereas another arcade, corresponding to the anterior pancreaticoduodenal arteries, surrounded the inferior part. The dorsal promordium of the pancreas surrounded and/or mixed the ventral primordium at 13-16 weeks. Thus, both arterial arcades were likely to attach to the dorsal primordium. CONCLUSION: The fetal anatomy of the pancreaticoduodenal vascular arcades as well as that of the hepatoduodenal ligament were quite different from adults in topographical relations. Thus, in the stage later than 30 weeks, further rotation of the duodenum along a horizontal axis seemed to be required to move the pylorus posterosuperiorly and to reflect the superior surface of the pancreatic head posteriorly. However, to change the topographical anatomy of the superior and inferior arterial arcades into the final position, re-arrangement of the pancreatic parenchyma might be necessary in the head.


Subject(s)
Female , Humans , Male , Pregnancy , Arteries/embryology , Duodenum/anatomy & histology , Fetus/blood supply , Gestational Age , Immunohistochemistry , Pancreas/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL