Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-153870

ABSTRACT

Any damage at molecular or cellular level is the major culprit for disease & ill health. Nanotechnology, “the manufacturing technology of the 21st century," helps us economically build a broad range of complex molecular machines by manipulating matter on an atomic and molecular scale. Nanotech may be able to create many new materials and devices with at least one dimension sized from 1 to 100 nanometres with a vast range of applications, such as in medicine, electronics, biomaterials and energy production. Lots of new possibilities come into account in relation to use of nanotechnology in medicines. Nanotechnology in medicine involves applications of nanoparticles, also involves nano-robots to make repairs at the cellular levels. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials.

2.
Genet. mol. biol ; 31(3): 789-792, 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-490069

ABSTRACT

We used random amplification of polymorphic DNA (RAPD) to generate species-specific diagnostic fragment patterns for the molecular identification of the ornamental aquarium fish species Badis badis and Dario dario. Seven arbitrary oligodecamer primers produced a total of 116 bands of which 98.23 percent were polymorphic. The size of the amplified products was in the range 340 bp to 2170 bp. Intraspecies genetic similarity was 0.879 ± 0.023 for B. badis and 0.840 ± 0.014 for D. dario while interspecies genetic similarity was 0.602 ± 0.017, with cluster analysis displaying separate taxonomic and evolutionary status for these fish. The results show that RAPD was useful for the molecular identification of aquarium fish species, with morphological traits also being important.

SELECTION OF CITATIONS
SEARCH DETAIL