Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Article in English | WPRIM | ID: wpr-997507

ABSTRACT

Radiogenomics or imaging genomics is a novel omics strategy of associating imaging data with genetic information, which has the potential to advance personalized medicine. Imaging features extracted from PET or PET/CT enable assessment of in vivo functional and physiological activity and provide comprehensive tumor information non-invasively. However, PET features are considered secondary to features on conventional imaging, and there has not yet been a review of the radiogenomic approach using PET features. This review article summarizes the current state of PET-based radiogenomic research for cancer, which discusses some of its limitations and directions for future study.

2.
Article in English | WPRIM | ID: wpr-997407

ABSTRACT

PURPOSE@#We developed predictive models using different programming languages and different computing platforms for machine learning (ML) and deep learning (DL) that classify clinical diagnoses in patients with epiphora. We evaluated the diagnostic performance of these models.@*METHODS@#Between January 2016 and September 2017, 250 patients with epiphora who underwent dacryocystography (DCG) and lacrimal scintigraphy (LS) were included in the study. We developed five different predictive models using ML tools, Python-based TensorFlow, R, and Microsoft Azure Machine Learning Studio (MAMLS). A total of 27 clinical characteristics and parameters including variables related to epiphora (VE) and variables related to dacryocystography (VDCG) were used as input data. Apart from this, we developed two predictive convolutional neural network (CNN) models for diagnosing LS images. We conducted this study using supervised learning.@*RESULTS@#Among 500 eyes of 250 patients, 59 eyes had anatomical obstruction, 338 eyes had functional obstruction, and the remaining 103 eyes were normal. For the data set that excluded VE and VDCG, the test accuracies in Python-based TensorFlow, R, multiclass logistic regression in MAMLS, multiclass neural network in MAMLS, and nuclear medicine physician were 81.70%, 80.60%, 81.70%, 73.10%, and 80.60%, respectively. The test accuracies of CNN models in three-class classification diagnosis and binary classification diagnosis were 72.00% and 77.42%, respectively.@*CONCLUSIONS@#ML-based predictive models using different programming languages and different computing platforms were useful for classifying clinical diagnoses in patients with epiphora and were similar to a clinician's diagnostic ability.

3.
Article in English | WPRIM | ID: wpr-786459

ABSTRACT

PURPOSE: We developed predictive models using different programming languages and different computing platforms for machine learning (ML) and deep learning (DL) that classify clinical diagnoses in patients with epiphora. We evaluated the diagnostic performance of these models.METHODS: Between January 2016 and September 2017, 250 patients with epiphora who underwent dacryocystography (DCG) and lacrimal scintigraphy (LS) were included in the study. We developed five different predictive models using ML tools, Python-based TensorFlow, R, and Microsoft Azure Machine Learning Studio (MAMLS). A total of 27 clinical characteristics and parameters including variables related to epiphora (VE) and variables related to dacryocystography (VDCG) were used as input data. Apart from this, we developed two predictive convolutional neural network (CNN) models for diagnosing LS images. We conducted this study using supervised learning.RESULTS: Among 500 eyes of 250 patients, 59 eyes had anatomical obstruction, 338 eyes had functional obstruction, and the remaining 103 eyes were normal. For the data set that excluded VE and VDCG, the test accuracies in Python-based TensorFlow, R, multiclass logistic regression in MAMLS, multiclass neural network in MAMLS, and nuclear medicine physician were 81.70%, 80.60%, 81.70%, 73.10%, and 80.60%, respectively. The test accuracies of CNN models in three-class classification diagnosis and binary classification diagnosis were 72.00% and 77.42%, respectively.CONCLUSIONS: ML-based predictive models using different programming languages and different computing platforms were useful for classifying clinical diagnoses in patients with epiphora and were similar to a clinician's diagnostic ability.


Subject(s)
Humans , Classification , Dataset , Diagnosis , Lacrimal Apparatus Diseases , Learning , Logistic Models , Machine Learning , Nuclear Medicine , Programming Languages , Radionuclide Imaging
SELECTION OF CITATIONS
SEARCH DETAIL