Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 117: e220125, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1406003

ABSTRACT

BACKGROUND Trypanosoma cruzi shows an exuberant genetic diversity. Currently, seven phylogenetic lineages, called discrete typing units (DTUs), are recognised: TcI-TcVI and Tcbat. Despite advances in studies on T. cruzi and its populations, there is no consensus regarding its heterogeneity. OBJECTIVES This study aimed to perform molecular characterisation of T. cruzi strains, isolated in the state of São Paulo, to identify the DTUs involved and evaluate their genetic diversity. METHODS T. cruzi strains were isolated from biological samples of chronic chagasic patients, marsupials and triatomines through culture techniques and subjected to molecular characterisation using the fluorescent fragment length barcoding (FFLB) technique. Subsequently, the results were correlated with complementary information to enable better discrimination between the identified DTUs. FINDINGS It was possible to identify TcI in two humans and two triatomines; TcII/VI in 19 humans, two marsupials and one triatomine; and TcIII in one human host, an individual that also presented a result for TcI, which indicated the possibility of a mixed infection. Regarding the strains characterised by the TcII/VI profile, the correlation with complementary information allowed to suggest that, in general, these parasite populations indeed correspond to the TcII genotype. MAIN CONCLUSIONS The TcII/VI profile, associated with domestic cycles and patients with chronic Chagas disease, was the most prevalent among the identified DTUs. Furthermore, the correlation of the study results with complementary information made it possible to suggest that TcII is the predominant lineage of this work.

2.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);64(2): 106-113, Feb. 2018. tab, graf
Article in English | LILACS | ID: biblio-1041014

ABSTRACT

Summary The yellow fever (YF) virus is a Flavivirus, transmitted by Haemagogus, Sabethes or Aedes aegypti mosquitoes. The disease is endemic in forest areas in Africa and Latin America leading to epizootics in monkeys that constitute the reservoir of the disease. There are two forms of YF: sylvatic, transmitted accidentally when approaching the forests, and urban, which can be perpetuated by Aedes aegypti. In Brazil, the last case of urban YF occurred in 1942. Since then, there has been an expansion of transmission areas from the North and Midwest regions to the South and Southeast. In 2017, the country faced an important outbreak of the disease mainly in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. In 2018, its reach extended from Minas Gerais toward São Paulo. Yellow fever has an incubation period of 3 to 6 days and sudden onset of symptoms with high fever, myalgia, headache, nausea/vomiting and increased transaminases. The disease ranges from asymptomatic to severe forms. The most serious forms occur in around 15% of those infected, with high lethality rates. These forms lead to renal, hepatic and neurological impairment, and bleeding episodes. Treatment of mild and moderate forms is symptomatic, while severe and malignant forms depend on intensive care. Prevention is achieved by administering the vaccine, which is an effective (immunogenicity at 90-98%) and safe (0.4 severe events per 100,000 doses) measure. In 2018, the first transplants in the world due to YF were performed. There is also an attempt to evaluate the use of active drugs against the virus in order to reduce disease severity.


Subject(s)
Humans , Animals , Yellow Fever/diagnosis , Yellow Fever/prevention & control , Yellow Fever/transmission , Yellow Fever/epidemiology , Aedes , Insect Vectors , Brazil/epidemiology , Disease Outbreaks/prevention & control , Yellow Fever Vaccine/standards
SELECTION OF CITATIONS
SEARCH DETAIL