ABSTRACT
@#Introduction: Binaural beats (BB) provisions alpha and gamma have been suggested to modulate working memory (WM), while white noise (WN) acted as a control condition. Methods: The current study overlays WN on alpha and gamma tones to study its modulating role on WM performance. A block-design n-back task paradigm used to determine the effect of load on embedded BB on WM performance using functional magnetic resonance imaging. Results: Six young adults (3 males and 3 females) with mean age of 23.5 ± 0.84 within the Kota Bharu vicinity participated in the study. A repeated-measures ANOVA (p<0.05) on response accuracy indicate medium effect size on condition (η2 =0.420), and large effect sizes on groups (η2 = 0.388) and load (η2 = 0.487). The potential practical difference is more evident on low- (0-back) and high-load (3-back). GWN provision marginally excels, implying its entrainment may benefit WM processing. A repeated-measures ANOVA (p<0.05) on reaction time (RT) implied a large effect size on all variables (condition: η2 =0.065, groups: η2 =0.227 and load: η2 =0.169). It was observed that BB exposure elicits a slow processing speed which worsens RT. The neural correlates suggest activated regions in GWN and AWN are associated with attentional mechanisms and WM processes. Conclusion: Preliminary findings indicate both embedded BB has a potential to improve WM performance with the cost of slower processing speed. GWN provision modulates attentional mechanisms benefiting WM performance and AWN may enhance performance in extreme ends of WM load.