Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 113(5): e170404, 2018. graf
Article in English | LILACS | ID: biblio-894928

ABSTRACT

BACKGROUND Trypanosoma cruzi is an important protozoan parasite and the causative agent of Chagas disease. A critical step in understanding T. cruzi biology is the study of cellular and molecular features exhibited during its growth curve. OBJECTIVES We aimed to acquire a global view of the gene expression profile of T. cruzi during epimastigote growth. METHODS RNA-Seq analysis of total and polysomal/granular RNA fractions was performed along the 10 days T. cruzi epimastigote growth curve in vitro, in addition to cell viability and cell cycle analyses. We also analysed the polysome profile and investigated the presence of granular RNA by FISH and western blotting. FINDINGS We identified 1082 differentially expressed genes (DEGs), of which 220 were modulated in both fractions. According to the modulation pattern, DEGs were grouped into 12 clusters and showed enrichment of important gene ontology (GO) terms. Moreover, we showed that by the sixth day of the growth curve, polysomal content declined greatly and the RNA granules content appeared to increase, suggesting that a portion of mRNAs isolated from the sucrose gradient during late growth stages was associated with RNA granules and not only polyribosomes. Furthermore, we discuss several modulated genes possibly involved in T. cruzi growth, mainly during the stationary phase, such as genes related to cell cycle, pathogenesis, metabolic processes and RNA-binding proteins.


Subject(s)
Humans , Sequence Analysis, RNA , Transcriptome/genetics , Axenic Culture , Life Cycle Stages/genetics
2.
Mem. Inst. Oswaldo Cruz ; 107(6): 790-799, set. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-649496

ABSTRACT

Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.


Subject(s)
DNA-Binding Proteins/metabolism , Protozoan Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Trypanosoma cruzi/metabolism , Gene Expression Regulation, Developmental , RNA Stability , Trypanosoma cruzi/growth & development
3.
Mem. Inst. Oswaldo Cruz ; 103(5): 483-488, Aug. 2008. ilus, mapas, tab
Article in English | LILACS | ID: lil-491971

ABSTRACT

The reintroduction of dengue virus type 3 (DENV-3) in Brazil in 2000 and its subsequent spread throughout the country was associated with genotype III viruses, the only DENV-3 genotype isolated in Brazil prior to 2002. We report here the co-circulation of two different DENV-3 genotypes in patients living in the Northern region of Brazil during the 2002-2004 epidemics. Complete genomic sequences of viral RNA were determined from these epidemics, and viruses belonging to genotypes V (Southeast Asia/South Pacific) and III were identified. This recent co-circulation of different DENV-3 genotypes in South America may have implications for pathological and epidemiological dynamics.


Subject(s)
Humans , Disease Outbreaks , Dengue Virus/genetics , Dengue/virology , Brazil/epidemiology , Dengue Virus/classification , Dengue/epidemiology , Genotype , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL