ABSTRACT
Oral cancer is usually preceded by oral potentially malignant disorders (OPMDs) and early detection can downstage the disease. The majority of OPMDs are asymptomatic in early stages and can be detected on routine oral examination. Though only a proportion of OPMDs may transform to oral squamous cell carcinoma (OSCC), they may serve as a surrogate clinical lesion to identify individuals at risk of developing OSCC. Currently, there is a scarcity of scientific evidence on specific interventions and management of OPMDs and there is no consensus regarding their management. A consensus meeting with a panel of experts was convened to frame guidelines for clinical practices and recommendations for management strategies for OPMDs. A review of literature from medical databases was conducted to provide the best possible evidence and provide recommendations in management of OPMDs
ABSTRACT
Background: The global incidence of oral cancer occurs in low-resource settings. Community-based oral screening is a strategic step toward downstaging oral cancer by early diagnosis. The mobile health (mHealth) program is a technology-based platform, steered with the aim to assess the use of mHealth by community health workers (CHWs) in the identification of oral mucosal lesions. MATERIALS AND METHODS: mHealth is a mobile phone-based oral cancer-screening program in a workplace setting. The participants were screened by two CHWs, followed by an assessment by an oral medicine specialist. A mobile phone-based questionnaire that included the risk assessment was distributed among participants. On specialist recommendation an oral surgeon performed biopsy on participants. The diagnosis by onsite specialist that was confirmed by histopathology was considered as gold standard. All individuals received the standard treatment protocol. A remote oral medicine specialist reviewed the uploaded data in Open Medical Record System. Sensitivity, specificity, positive and negative predictive values were calculated. Inter-rater agreement was analyzed with Cohen's kappa coefficient (κ) test, and the diagnostic ability of CHWs, onsite specialist, and remote specialist was illustrated using receiver operating characteristic curve. RESULTS: CHWs identified oral lesions in 405 (11.8%) individuals; the onsite specialist identified oral lesions in 394 (11.4%) individuals; and the remote specialist diagnosed oral lesions in 444 (13%). The inter-rater agreement between the CHW and the onsite specialist showed almost perfect agreement with the κ score of 0.92, and a substantial agreement between CHW and remote specialist showed a score of 0.62. The sensitivity, specificity, positive and negative predictive values of CHWs in the identification of oral lesion were 84.7, 97.6, 84.8, and 97.7%, respectively. CONCLUSION: The trained CHWs can aid in identifying oral potentially malignant disorders and they can be utilized in oral cancer-screening program mHealth effectively.