Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 40(6): 831-837, June 2007. graf
Article in English | LILACS | ID: lil-452677

ABSTRACT

Sepsis and its complications are the leading causes of mortality in intensive care units, accounting for 10-50 percent of deaths. Intensive care unit survivors present long-term cognitive impairment, including alterations in memory, attention, concentration, and/or global loss of cognitive function. In the present study, we investigated behavioral alterations in sepsis-surviving rats. One hundred and ten male Wistar rats (3-4 months, 250-300 g) were submitted to cecal ligation and puncture (CLP), and 44 were submitted to sham operation. Forty-four rats (40 percent) survived after CLP, and all sham-operated animals survived and were used as control. Twenty animals of each group were used in the object recognition task (10 in short-term memory and 10 in long-term memory), 12 in the plus-maze test and 12 in the forced swimming test. Ten days after surgery, the animals were submitted individually to an object recognition task, plus-maze and forced swimming tests. A significant impairment of short- and long-term recognition memory was observed in the sepsis group (recognition index 0.75 vs 0.55 and 0.74 vs 0.51 for short- and long-term memory, respectively (P < 0.05). In the elevated plus-maze test no difference was observed between groups in any of the parameters assessed. In addition, sepsis survivors presented an increase in immobility time in the forced swimming test (180 vs 233 s, P < 0.05), suggesting the presence of depressive-like symptoms in these animals after recovery from sepsis. The present results demonstrated that rats surviving exposure to CLP, a classical sepsis model, presented recognition memory impairment and depressive-like symptoms but not anxiety-like behavior.


Subject(s)
Animals , Male , Rats , Anxiety Disorders/etiology , Avoidance Learning/physiology , Cecal Diseases/physiopathology , Depressive Disorder/etiology , Intestinal Obstruction/physiopathology , Intestinal Perforation/physiopathology , Shock, Septic/physiopathology , Anxiety Disorders/physiopathology , Disease Models, Animal , Depressive Disorder/physiopathology , Maze Learning , Memory, Short-Term/physiology , Rats, Wistar , Swimming , Shock, Septic/psychology
2.
Braz. j. med. biol. res ; 38(1): 55-58, Jan. 2005. graf
Article in English | LILACS | ID: lil-405546

ABSTRACT

We studied the effects of infusion of nerve growth factor (NGF) into the hippocampus and entorhinal cortex of male Wistar rats (250-300 g, N = 11-13 per group) on inhibitory avoidance retention. In order to evaluate the modulation of entorhinal and hippocampal NGF in short- and long-term memory, animals were implanted with cannulae in the CA1 area of the dorsal hippocampus or entorhinal cortex and trained in one-trial step-down inhibitory avoidance (foot shock, 0.4 mA). Retention tests were carried out 1.5 h or 24 h after training to measure short- and long-term memory, respectively. Immediately after training, rats received 5 æl NGF (0.05, 0.5 or 5.0 ng) or saline per side into the CA1 area and entorhinal cortex. The correct position of the cannulae was confirmed by histological analysis. The highest dose of NGF (5.0 ng) into the hippocampus blocked short-term memory (P < 0.05), whereas the doses of 0.5 (P < 0.05) and 5.0 ng (P < 0.01) NGF enhanced long-term memory. NGF administration into the entorhinal cortex improved long-term memory at the dose of 5.0 ng (P < 0.05) and did not alter short-term memory. Taken as a whole, our results suggest a differential modulation by entorhinal and hippocampal NGF of short- and long-term memory.


Subject(s)
Animals , Male , Rats , Entorhinal Cortex/drug effects , Hippocampus/drug effects , Memory/drug effects , Nerve Growth Factor/pharmacology , Avoidance Learning/drug effects , Entorhinal Cortex/physiology , Hippocampus/physiology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Memory/physiology , Rats, Wistar , Retention, Psychology/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL