Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 31: 57-60, Jan. 2018. ilus, graf
Article in English | LILACS | ID: biblio-1022253

ABSTRACT

Background: Bacteriophages have been proposed as an alternative to control pathogenic bacteria resistant to antibiotics. However, they are not extensively used due to different factors such as vulnerability under environmental conditions and the lack of efficient administration methods. A potential solution is the encapsulation of bacteriophages in hydrogel polymers to increase their viability and as a controlled release method. This work describes the use of alginate-Ca+2 matrixes as mechanisms for protection and dosification of the phage f3αSE which has been successfully used to prevent infections produced by Salmonella Enteritidis. Results: The viability of the pure phage is reduced in near 100% after 1-h incubation at pH 2 or 3. However, the encapsulated phage remains active in 80, 6% at pH 3, while no differences were observed at pH 2, 4 or 7. Exposition of f3αSE to different T° showed that the viability of this phage decreased with increased T° to near 15% at 60°C, while the encapsulated phage remains with 50% viability at same temperature. Finally, the encapsulation of phages showed to extend their presence for 100 h in the medium compared to non-encapsulated phages in a water flow system, which simulate automatic birdbath used in poultry industry, maintaining the phage concentration between 102 and 104 PFU/mL during 250 h. Conclusions: Encapsulation in alginate-Ca+2 spheres can be a good alternative to extend viability of phages and can be used as a phage method dosification method in water flow systems.


Subject(s)
Salmonella enteritidis/pathogenicity , Salmonella Infections/therapy , Bacteriophages/physiology , Alginates/chemistry , Polymers , Temperature , Capsules , Hydrogel, Polyethylene Glycol Dimethacrylate , Microbial Viability , Hydrogen-Ion Concentration
2.
Electron. j. biotechnol ; 14(4): 11-11, July 2011. ilus, tab
Article in English | LILACS | ID: lil-640506

ABSTRACT

Background: Bacteriophages are viruses that infect bacteria and therefore are widespread in nature. Those that lyse the pathogen Salmonella enterica serovar Enteritidis (SE) should be expected in niches in which this bacterium thrives, among others the avian egg. Furthermore, bacteriophages could remain viable in this milieu. Results: Upon artificially infecting hen eggs with the SE bacteriophage f18 we found that the bacteriophage titer remains stable at least for up to 144 hrs post-infection , both in yolk and albumen at 25ºC. Conclusion: Bacteriophage f18 withstands the physico-chemical conditions of the egg inner milieu and could be considered for SE-controlling measures in the poultry industry.


Subject(s)
Bacteriophages , Eggs/microbiology , Salmonella enteritidis/virology
3.
Biol. Res ; 38(1): 83-88, 2005. ilus, tab
Article in English | LILACS | ID: lil-404830

ABSTRACT

Prunus persica has been proposed as a genomic model for deciduous trees and the Rosaceae family. Optimized protocols for RNA isolation are necessary to further advance studies in this model species such that functional genomics analyses may be performed. Here we present an optimized protocol to rapidly and efficiently purify high quality total RNA from peach fruits (Prunus persica). Isolating high-quality RNA from fruit tissue is often difficult due to large quantities of polysaccharides and polyphenolic compounds that accumulate in this tissue and co-purify with the RNA. Here we demonstrate that a modified version of the method used to isolate RNA from pine trees and the woody plant Cinnamomun tenuipilum is ideal for isolating high quality RNA from the fruits of Prunus persica. This RNA may be used for many functional genomic based experiments such as RT-PCR and the construction of large-insert cDNA libraries.


Subject(s)
DNA, Complementary/genetics , Gene Library , Genomics/methods , Prunus/genetics , RNA, Plant/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL