ABSTRACT
The objective of this study was to investigate the effect of whole body vibration (WBV) exercise on oxidative stress markers in a group of women with fibromyalgia (FM) compared to a group of healthy women (CT). Twenty-one women diagnosed with FM and 21 age- and weight-matched healthy women were enrolled the study. Plasma oxidative stress markers (primary outcomes) were evaluated at rest and after WBV, and included thiobarbituric acid reactive substances (TBARS), iron reduction capacity (FRAP), superoxide dismutase antioxidant enzymes activity (SOD), and catalase (CAT). At rest, the FM group had higher TBARS (P<0.001) and FRAP (P<0.001), and lower CAT (P=0.005) compared to the CT. In the CT group, the WBV had no effect on TBARS (P=0.559) and FRAP (P=0.926), whereas it increased both SOD (P<0.001) and CAT (P<0.001). In the FM group, the WBV reduced TBARS (p <0.001), FRAP (P<0.001), and CAT (P=0.005), while it increased SOD (P=0.019). There was an interaction effect (moments vs groups) in the TBARS (effect size=1.34), FRAP (effect size=0.93), CAT (effect size=1.45), and SOD (effect size=1.44) (P<0.001). A single trial of WBV exercise improved all oxidant and antioxidant parameters towards a greater adaptation to the stress response in FM women.
Subject(s)
Humans , Vibration , Biomarkers/blood , Fibromyalgia/blood , Oxidative Stress/physiology , Fibromyalgia/physiopathology , Case-Control StudiesABSTRACT
Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H) and 8 normotensive (N) subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively). They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C) followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity). Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS) levels and ferric reducing ability of plasma (FRAP). Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05), although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1) and lower TBARS (P<0.01) and FRAP (P<0.05) levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors), present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.
Subject(s)
Humans , Male , Adult , Middle Aged , Cytokines/blood , Hypertension/physiopathology , Arterial Pressure/physiology , Blood Pressure/physiology , Case-Control Studies , Heart Rate/physiology , Hot Temperature , Hypertension/blood , Inflammation/physiopathology , Lipid Peroxidation/physiology , Oxidation-Reduction , Thiobarbituric Acid Reactive Substances/analysisABSTRACT
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.