Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biol. Res ; 46(3): 243-249, 2013. ilus, graf
Article in English | LILACS | ID: lil-692190

ABSTRACT

Myelin sheaths present two distinct domains: compacted myelin spirals and flanking non-compacted cytoplasmic channels, where lipid and protein segregation is established by unknown mechanisms. Septins, a conserved family of membrane and cytoskeletal interacting GTPases, form intracellular diffusion barriers during cell division and neurite extension and are expressed in myelinating cells. Septins, particularly septin 7 (Sept7), the central constituent of septin polymers, are associated with the cytoplasmic channels of myelinating cells. Here we show that Schwann cells deprived of Sept7 fail to wrap around axons from dorsal root ganglion neurons and exhibit disorganization of the actin cytoskeleton. Likewise, Sept7 distribution is dependent on microfilament but not microtubule organization.


Subject(s)
Animals , Rabbits , Actins/metabolism , Axons/chemistry , Schwann Cells/chemistry , Septins/metabolism , Axons/physiology , Myelin Sheath/chemistry , Myelin Sheath/physiology , Neurons , Schwann Cells/physiology
2.
Biol. Res ; 46(3): 289-294, 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-692196

ABSTRACT

Phototransduction, the mechanism underlying the electrical response to light in photoreceptor cells, has been thoroughly investigated in Drosophila melanogaster, an essential model in signal transduction research. These cells present a highly specialized photosensitive membrane consisting of thousands of microvilli forming a prominent structure termed a rhabdomere. These microvilli encompass the phototransduction proteins, most of which are transmembrane and exclusively rhabdomeric. Rhabdomere membrane lipids play a crucial role in the activation of the transient receptor potential ionic channels (TRP and TRPL) responsible for initiating the photoresponse. Despite its importance, rhabdomere lipid composition has not been established. We developed a novel preparation enriched in rhabdomere membranes to perform a thorough characterization of the lipidomics of Drosophila rhabdomeres. Isolated eyes (500) were homogenized and subjected to a differential centrifugation protocol that generates a fraction enriched in rhabdomere membrane. Lipids extracted from this preparation were identified and quantified by gas chromatography coupled to mass spectrometry. We found an abundance of low sterol esters (C16:0, C18:0), highly abundant and diverse triglycerides, free fatty acids, a moderate variety of mono and diacyglycerols (C:16:0, 18:0, C18:1) and abundant phospholipids (principally C18:2). This preparation opens a new avenue for investigating essential aspects of phototransduction.


Subject(s)
Animals , Drosophila Proteins/chemistry , Drosophila melanogaster/chemistry , Fatty Acids/analysis , Microvilli/chemistry , Photoreceptor Cells, Invertebrate/chemistry , Transient Receptor Potential Channels/chemistry , Drosophila Proteins/analysis , Light Signal Transduction/physiology , Protein Transport/physiology , Transient Receptor Potential Channels/analysis
3.
Biol. Res ; 38(4): 381-387, 2005. ilus, graf
Article in English | LILACS | ID: lil-425822

ABSTRACT

Research on Alzheimer's disease (AD) focuses mainly on neuronal death and synaptic impairment induced by â-Amyloid peptide (Aâ), events at least partially mediated by astrocyte and microglia activation. However, substantial white matter damage and its consequences on brain function warrant the study of oligodendrocytes participation in the pathogenesis and progression of AD. Here, we analyze reports on oligodendrocytes' compromise in AD and discuss some experimental data indicative of Aâ toxicity in culture. We observed that 1 ìM of fibrilogenic Aâ peptide damages oligodendrocytes in vitro; while pro-inflammatory molecules (1 ìg/ml LPS + 1 ng/ml IFNã) or the presence of astrocytes reduced the Ab-induced damage. This agrees with our previous results showing an astrocyte-mediated protective effect over Aâ-induced damage on hippocampal cells and modulation of the activation of microglial cells in culture. Oligodendrocytes protection by astrocytes could be, either by reduction of Aâ fibrilogenesis/deposition or prevention of oxidative damage. Likewise, the decrease of Aâ-induced damage by proinflammatory molecules could reflect the production of trophic factors by activated oligodendrocytes and/or a metabolic activation as observed during myelination. Considering the association of inflammation with neurodegenerative diseases, oligodendrocytes impairment in AD patients could potentiate cell damage under pathological conditions.


Subject(s)
Animals , Alzheimer Disease/complications , Oligodendroglia , Amyloid beta-Peptides/toxicity , Inflammation/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL