Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Biosci ; 2007 Apr; 32(3): 549-57
Article in English | IMSEAR | ID: sea-111209

ABSTRACT

Temperature is an important physical stress factor sensed by bacteria and used to regulate gene expression. Three different macromolecules have been identified being able to sense temperature: DNA, mRNA and proteins. Depending on the induction mechanism, two different pathways have to be distinguished, namely the heat shock response and the high temperature response. While the heat shock response is induced by temperature increments and is transient, the high temperature response needs a specific temperature to become induced and proceeds as long as cells are exposed to that temperature. The heat shock response is induced by denatured proteins and aimed to prevent formation of protein aggregates by refolding or degradation, and the high temperature response is mainly used by pathogenic bacteria to detect entry into a mammalian host followed by induction of their virulence genes. All known high temperature sensors are present in two alternative conformations depending on the temperature. Heat shock sensors are either molecular chaperones or proteases which keep either a positive transcriptional regulator inactive or a negative regulator active or do not attack the regulator, respectively, under physiological conditions. Denatured proteins either titrate the molecular chaperones or activate the protease. The evolution of the different temperature sensors is discussed.


Subject(s)
Adaptation, Physiological , Bacteria/genetics , Body Temperature Regulation , Biological Evolution , Hot Temperature
2.
An. acad. bras. ciênc ; 77(1): 113-124, Mar. 2005. tab
Article in English | LILACS | ID: lil-393099

ABSTRACT

Bacillus subtilis e alguns de seus parentes mais próximos possuem uma longa história de aplicações industriais e biotecnológicas. A busca de sistemas de expressão de antígenos baseados em linhagens recombinants de B. subtilis mostra-se atrativa em função do conhecimento genético disponível e ausência de uma membrana externa, o que simplifica a secreção e a purificação de proteínas heterólogas. Mais recentemente, esporos geneticamente modificados de B. subtilis foram descritos com veículos indestrutíveis para o transporte de antígenos vacinais. Todavia a produção e o transporte de antígenos por linhagens de B. subtilis encontra obstáculos, como a expressão gênica instável e imunogenicidade reduzida, que podem ser superados com o auxílio de tecnologias genéticas atualmente disponíveis. Apresentamos nesta revisão o estado atual da pesquisa em vacinas baseadas em B. subtilis, empregado tanto como fábrica de proteínas ou veículos, e discute algumas alternativas para o uso mais adequado de linhagens geneticamente modificadas.


Subject(s)
Humans , Antigens, Bacterial , Bacillus subtilis , Bacterial Vaccines , Drug Carriers , Drug Design , Antigens, Heterophile , Recombinant Proteins
3.
Genet. mol. biol ; 27(3): 442-453, Sept. 2004. tab
Article in English | LILACS | ID: lil-366190

ABSTRACT

Attempts to obtain a recombinant protein using prokaryotic expression systems can go from a rewarding and rather fast procedure to a frustrating time-consuming experience. In most cases production of heterologous proteins in Escherichia coli K12 strains has remained an empirical exercise in which different systems are tested without a careful insight into the various factors affecting adequate expression of the encoded protein. The present review will deal with E. coli as protein factory and will cover some of the aspects related to transcriptional and translational expression signals, factors affecting protein stability and solubility and targeting of proteins to different cell compartments. Based on the knowledge accumulated over the last decade, we believe that the rate of success for those dedicated to expression of recombinant proteins based on the use E. coli strains can still be significantly improved.


Subject(s)
Base Sequence , Escherichia coli , Recombinant Proteins , Genetic Vectors , Molecular Chaperones , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL