Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Veterinary Science ; : e38-2022.
Article in English | WPRIM | ID: wpr-926464

ABSTRACT

Background@#Minimally invasive surgery (MIS) technique of sacroiliac luxation in toy breed dogs using cannulated screws has not been described. @*Objectives@#The purpose of this study was to evaluate the effectiveness of pelvic canal recovery, the reproducibility of successful surgery outcomes, and the acceptable difficulty of the procedure in MIS of sacroiliac luxation in toy breed dogs. @*Methods@#MIS using 2.3-mm cannulated screws was demonstrated in 12 toy breed dog cadavers with sacroiliac luxation artificially induced. Pre and postoperative radiographs were used to evaluate the pelvic canal diameter ratio (PCDR), hemipelvic canal width ratio (HCWR), and reduction rate. Dorsoventral angle (DVA) and craniocaudal angle (CCA) of the inserted screw were obtained postoperative computed tomographic scan. @*Results@#The statistically significant difference between the mean pre and postoperative PCDR was found (1.10 ± 0.12 and 1.26 ± 0.11, respectively; p = 0.002), and the mean HCWR close to 1.0 meaning symmetric pelvis also was obtained (0.97 ± 0.07). The mean DVA and CCA were 2.26° ± 1.33° and 2.60° ± 1.86°, respectively. @*Conclusions@#MIS of sacroiliac luxation using 2.3-mm cannulated screws is applicable to toy breed dogs with acceptable difficulty.

2.
Journal of Veterinary Science ; : 387-397, 2017.
Article in English | WPRIM | ID: wpr-57408

ABSTRACT

Ginseng gintonin is an exogenous ligand of lysophosphatidic acid (LPA) receptors. Accumulating evidence shows LPA helps in rapid recovery of corneal damage. The aim of this study was to evaluate the therapeutic efficacy of gintonin in a rabbit model of corneal damage. We investigated the signal transduction pathway of gintonin in human corneal epithelium (HCE) cells to elucidate the underlying molecular mechanism. We next evaluated the therapeutic effects of gintonin, using a rabbit model of corneal damage, by undertaking histochemical analysis. Treatment of gintonin to HCE cells induced transient increases of [Ca²⁺](i) in concentration-dependent and reversible manners. Gintonin-mediated mobilization of [Ca²⁺](i) was attenuated by LPA1/3 receptor antagonist Ki16425, phospholipase C inhibitor U73122, inositol 1,4,5-triphosphate receptor antagonist 2-APB, and intracellular Ca²⁺ chelator BAPTA-AM. Gintonin facilitated in vitro wound healing in a concentration-dependent manner. When applied as an eye-drop to rabbits with corneal damage, gintonin rapidly promoted recovery. Histochemical analysis showed gintonin decreased corneal apoptosis and increased corneal cell proliferation. We demonstrated that LPA receptor activation by gintonin is linked to in vitro and in vivo therapeutic effects against corneal damage. Gintonin can be applied as a clinical agent for the rapid healing of corneal damage.


Subject(s)
Humans , Rabbits , Apoptosis , Cell Proliferation , Corneal Injuries , Epithelium, Corneal , In Vitro Techniques , Inositol 1,4,5-Trisphosphate , Mortuary Practice , Panax , Receptors, Lysophosphatidic Acid , Signal Transduction , Therapeutic Uses , Type C Phospholipases , Wound Healing , Wounds and Injuries
SELECTION OF CITATIONS
SEARCH DETAIL