Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Radiological Medicine and Protection ; (12): 518-523, 2023.
Article in Chinese | WPRIM | ID: wpr-993121

ABSTRACT

Objective:To investigate the advantage of three dimensional(3D)-printed tissue compensators in radiotherapy for superficial tumors at irregular sites.Methods:A subcutaneous xenograft model of prostate cancer in nude mice was established. Mice were randomly divided into no tissue compensator group( n=6), common tissue compensator group( n=6), and 3D-printed tissue compensator group( n=6). Computed tomography (CT) images of nude mice in the 3D-printed tissue compensator group were acquired. Compensator models were made using polylactic acid, and material properties were evaluated by measuring electron density. CT positioning images of the three groups after covering the corresponding tissue compensators were acquired to delineate the gross tumor volume (GTV). Nude mice in the three groups were irradiated with 6 MV X-rays at the prescribed dose. The prescribed dose for the three groups was 1 500 cGy. The dose distribution in the GTV of the three groups was calculated and compared using the analytical anisotropic algorithm in the Eclipse 13.5 treatment planning system. The metal-oxide-semiconductor field-effect transistor was used to verify the actual dose received on the skin surface of nude mice. Results:The air gap in the 3D-printed tissue compensator group and the common tissue compensator group was 0.20±0.07 and 0.37±0.07 cm 3, respectively ( t=4.02, P<0.01). For the no tissue compensator group, common tissue compensator group, and 3D-printed tissue compensator group, the D95% in the target volume was (1 188.58±92.21), (1 369.90±146.23), and (1 440.29±45.78) cGy, respectively ( F=9.49, P<0.01). D98% was (1 080.13±88.30), (1 302.76±158.43), and (1 360.23±48.71) cGy, respectively ( F=11.17, P<0.01). Dmean was (1 549.08±44.22), (1 593.05±65.40), and (1 638.87±40.83) cGy, respectively ( F=4.59, P<0.05). The measured superficial dose was (626.03±26.75), (1 259.83±71.94), and (1 435.30±67.22) cGy, respectively ( F=263.20, P<0.001). The percentage variation in tumor volume growth after radiation was not significantly different between the common tissue compensator group and the 3D-printed tissue compensator group ( P>0.05). Conclusions:3D-printed tissue compensators fit well to the body surface, which reduces air gaps, effectively increases the dose on the body surface near the target volume, and provides ideas for radiotherapy for superficial tumors at some irregular sites.

SELECTION OF CITATIONS
SEARCH DETAIL