ABSTRACT
Background@#The advent of fractionated picosecond (ps) lasers has provided an opportunity to explore new ways of creating microinjuries in the skin to induce skin rejuvenation. @*Objective@#To compare the efficacy and safety of diffractive optical element (DOE)-assisted ps neodymium: yttrium-aluminum-garnet (Nd:YAG) lasers with 532-nm and 1,064-nm wavelengths (532-nm and 1,064-nm Nd:YAG P-DOE) using a novel fractional handpiece for the treatment of photoaged skin. @*Methods@#An ex vivo guinea pig skin experiment was performed by evaluating the histology of the skin after 532-nm Nd:YAG P-DOE irradiation. A randomized, prospective, split-face study was performed on eight subjects with 532-nm and 1,064-nm Nd:YAG P-DOE. @*Results@#Based on the histological evaluation using ex vivo guinea pig skin, a reasonable safety profile and the potential to generate effective skin rejuvenation was observed using the 532-nm Nd:YAG P-DOE. Results demonstrated that both 532- and 1,064-nm Nd:YAG P-DOE were similarly effective in improving skin texture and skin pores; however, 532-nm Nd:YAG P-DOE was more effective in treating dyspigmentation. @*Conclusion@#At a preliminary level, this study revealed that 532-nm and 1,064-nm ps Nd:YAG lasers using DOE fractional technology may improve photoaged skin. In conclusion, 532-nm Nd:YAG P-DOE may be especially beneficial for skin with epidermal pigmentary lesions.
ABSTRACT
Objective@#To determine correlations of alternation motor rate (AMR), sequential motor rate (SMR), and maximum phonation time (MPT) with the severity of dysphagia in subacute stroke patients. @*Methods@#This was a retrospective chart review study. Data of 171 subacute stroke patients were analyzed. Patient’s AMR, SMR, and MPT data were collected from their language evaluations. Video fluoroscopic swallowing study (VFSS) was done. Data of dysphagia scales including penetration-aspiration scale (PAS), American Speech-Language-Hearing Association National Outcomes Measurement System (ASHA-NOMS) scale, clinical dysphagia scale (CDS), and videofluoroscopic dysphagia scale (VDS) were obtained. AMR, SMR, and MPT were compared between a non-aspirator group and an aspirator group. Correlations of AMR, SMR, and MPT with dysphagia scales were analyzed. @*Results@#AMR ("ka"), SMR, and modified Rankin Scale were significant associated factors between non-aspirator group and aspirator group, while AMR ("pa"), AMR ("ta"), and MPT were not. AMR, SMR, and MPT showed significant correlations with PAS score, ASHA-NOMS scale, CDS, VDS oral, and VDS pharyngeal scores. The cut-off value for distinguishing non-aspirator group and aspiration group was 18.5 for AMR ("ka") (sensitivity of 74.4%, specificity of 70.8%) and 7.5 for SMR (sensitivity of 89.9%, specificity of 61.0%). AMR and SMR were significantly lower in before-swallow aspiration group. @*Conclusion@#Articulatory diadochokinetic tasks that can be easily performed at the bedside would be particularly helpful in determining the oral feeding possibility of subacute stroke patients who cannot undergo VFSS, which is the gold standard for dysphagia assessment.
ABSTRACT
Clear cell acanthoma (CCA) is an uncommon, benign epithelial tumor presenting as a well-defined, slow-growing solitary nodule. The diagnosis of CCA is usually based on clinical and histopathological evaluation of the tumor.However, when such type of benign tumor occurs on an exposed area, a biopsy is not always the best diagnostic option since it may leave scar. The recent advent of dermoscopy has offered an accurate and non-invasive method to diagnose CCA without resorting to skin biopsy. A 40-year-old male presented with a shiny, erythematous-to-brown, flattened nodule on the left cheek. Dermoscopic examination revealed a ‘string of pearls’ vascular pattern, a characteristic dermoscopic feature of CCA. Under the clinical and dermoscopic impression of CCA, a 595 nm pulsed dye laser (PDL) therapy targeting the vascular tissue in the superficial dermis of the lesion was chosen for a minimally invasive treatment.After repeated sessions of PDL, an optimal cosmetic outcome was achieved and no recurrence was recorded during the follow-up period. Herein, we report a case of presumed CCA which was successfully diagnosed and treated by utilizing non-invasive modalities.
ABSTRACT
Clear cell acanthoma (CCA) is an uncommon, benign epithelial tumor presenting as a well-defined, slow-growing solitary nodule. The diagnosis of CCA is usually based on clinical and histopathological evaluation of the tumor.However, when such type of benign tumor occurs on an exposed area, a biopsy is not always the best diagnostic option since it may leave scar. The recent advent of dermoscopy has offered an accurate and non-invasive method to diagnose CCA without resorting to skin biopsy. A 40-year-old male presented with a shiny, erythematous-to-brown, flattened nodule on the left cheek. Dermoscopic examination revealed a ‘string of pearls’ vascular pattern, a characteristic dermoscopic feature of CCA. Under the clinical and dermoscopic impression of CCA, a 595 nm pulsed dye laser (PDL) therapy targeting the vascular tissue in the superficial dermis of the lesion was chosen for a minimally invasive treatment.After repeated sessions of PDL, an optimal cosmetic outcome was achieved and no recurrence was recorded during the follow-up period. Herein, we report a case of presumed CCA which was successfully diagnosed and treated by utilizing non-invasive modalities.
ABSTRACT
Myopericytoma, previously called as hemangiopericytoma, is a rare, soft tissue neoplasm. It usually presents as an asymptomatic solitary lesion, and it most commonly affects the lower extremities. It is characterized by the distinctive perivascular organization of oval-to-spindle-shaped cells in a concentric pattern. Here we report a case of myopericytoma, which was diagnosed in a 60-year-old woman who presented with a one-year history of a deep-seated nodule and reviewed previous cases in the Korean literature and found a predominance of female cases of myopericytoma, contrary to known predilections. Hence, we have reported a typical case and summarized clinical findings in the Korean population.
ABSTRACT
Background and Objectives@#Autologous or allogeneic bone marrow-derived mesenchymal stem cells (BMSCs) have been applied in clinical trials to treat liver disease. However, only a few studies are comparing the characteristics of autologous MSCs from patients and allogeneic MSCs from normal subjects. @*Methods@#and Results: We compared the characteristics of BMSCs (BCs and BPs, respectively) isolated from six healthy volunteers and six patients with cirrhosis. In passage 3 (P3), senescent population and expression of p53 and p21 were slightly higher in BPs, but the average population doubling time for P3–P5 in BPs was approximately 65.3±11.1 h, which is 18.4 h shorter than that in BCs (83.7±9.2 h). No difference was observed in the expression of CD73, CD90, or CD105 between BCs and BPs. Adipogenic differentiation slightly increased in BCs, but the expression levels of leptin, peroxisome proliferator-activated receptor γ, and CCAAT-enhancer-binding protein α did not vary between differentiated BCs and BPs. While ATP and reactive oxygen species levels were slightly lower in BPs, mitochondrial membrane potential, oxygen consumption rate, and expression of mitochondria-related genes such as cytochrome c oxidase 1 were not significantly different between BCs and BPs. @*Conclusions@#Taken together, there are marginal differences in the proliferation, differentiation, and mitochondrial activities of BCs and BPs, but both BMSCs from patients with cirrhosis and healthy volunteers show comparable characteristics.
ABSTRACT
PURPOSE: The purpose of this study was to identify factors affecting communication ability of nursing students.METHODS: The participants were 140 students in nursing college at the G city. The data were collected using online-questionnaires from July 4 to July 10 2018 and analyzed using descriptive statistics, t-test, Pearson correlation analysis and multiple linear regression analysis with SPSS 20.0 program.RESULTS: The results show that communication ability was statistically significant according to self-awareness, other-awareness, empathy. Multiple regression analysis found that the factors influencing communication ability of nursing students were empathy(β=.540), self-awareness(β=.429), other-awareness(β=.375). These variable factors explained community ability as 46.3%.CONCLUSIONS: This study suggests that empathy, self-awareness, other-awareness are significant factors of communication ability of nursing students. Therefore, strategies to improve communication ability of nursing students should be developed with consideration for empathy, self-awareness, other-awareness.
Subject(s)
Humans , Communication , Empathy , Linear Models , Nursing , Residence Characteristics , Students, NursingABSTRACT
BACKGROUND: Many researchers have sought to identify safe, natural herbal extracts that exert an anti-melanogenesis effect. Cinnamomi cortex has been widely used as a herbal medicine in Asia and Europe. OBJECTIVE: To confirm the inhibitory effects of Cinnamomi cortex extract against melanogenesis and inflammation and to elucidate the underlying mechanism of these actions. METHODS: Effects of Cinnamomi cortex extract on melanin synthesis and tyrosinase activity in B16F10 melanoma cells were evaluated using an ELISA reader. Tyrosinase and MITF protein expression was determined using western blotting. Nitric oxide production in RAW 264.7 cells was measured using Griess reaction. PGE₂ was assayed with an ELISA kit. RESULTS: Cinnamomi cortex extracts inhibited melanin synthesis, tyrosinase activity, and MITF and tyrosinase expression through regulation of the ERK and CREB genes in α-MSH-induced B16 melanoma cells. In addition, Cinnamomi cortex extracts inhibited the expression of NO, PGE₂, and pro-inflammatory cytokines in lipopolysaccharide-induced RAW 264.7 cells. CONCLUSION: We suggest that Cinnamomi cortex may be a potentially useful agent for treating inflammatory skin diseases such as hyperpigmentation based on its inhibitory effects against melanin synthesis and inflammation response in vitro.
Subject(s)
Anti-Inflammatory Agents , Asia , Blotting, Western , Cytokines , Enzyme-Linked Immunosorbent Assay , Europe , Herbal Medicine , Hyperpigmentation , In Vitro Techniques , Inflammation , Melanins , Melanoma , Melanoma, Experimental , Microphthalmia-Associated Transcription Factor , Monophenol Monooxygenase , Nitric Oxide , Skin DiseasesABSTRACT
No abstract available.
Subject(s)
Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Eye Diseases , Thyroid GlandABSTRACT
BACKGROUND: We aimed to determine the effect of fibronectin (FN)-immobilized microgrooved titanium (Ti) on human gingival fibroblast proliferation, gene expression and protein expression. METHODS: Photolithography was used to fabricate the microgrooved Ti, and amine funtionalization (silanization) was used for FN immobilization on titanium surfaces. Cell proliferation, gene expression and protein expression were analyzed, followed by multiple regression analysis for determining the influential factors on cell proliferation. RESULTS: FN-immobilized microgrooved Ti significantly enhanced the fibroblast proliferation in various timelines of culture, among which a burst of fivefold increase is induced at 96 h of culture compared to that on the control smooth Ti. We suggest a presence of the synergistic promotion effect of microgrooves and FN immobilization on fibroblast proliferation. Through a series of analyses on the expression of various genes and proteins involved in cell adhesion and proliferation, cyclin-dependent kinase 6, cyclin D1, integrin α5, oncogene c-Src, osteonectin, paxillin and talin-2 were determined as influential factors on promoting fibroblast proliferation induced by FN-immobilized microgrooved Ti. CONCLUSION: FN-immobilized microgrooved Ti can act as an effective surface for enhancing fibroblast proliferation, and can be used for promoting soft tissue response on the connective tissue attachment zone of biomaterial surfaces.
Subject(s)
Humans , Cell Adhesion , Cell Proliferation , Connective Tissue , Cyclin D1 , Cyclin-Dependent Kinase 6 , Fibroblasts , Fibronectins , Gene Expression , Immobilization , Oncogenes , Osteonectin , Paxillin , TitaniumABSTRACT
The purpose of this study is to investigate the correlation of cell surface hydrophobicity (CSH) and biofilm formation or adhesion in Candida albicans (C. albicans) and several pathogenic bacteria. All of C. albicans (n=82) and 7 bacterial species (Escherichia coli, n=25; Klebsiella pneumoniae, n=33; Morganella morganii, n=21; Proteus mirabilis, n=33; Proteus vulgaris, n=12; Pseudomonas aeruginosa, n=31; Staphylococcus aureus, n=31) were isolated clinically. CSH was quantified with microbial adhesion to hydrocarbons. Biofilm formation was determined by tetrazolium salt reduction assay. Adhesion assay was performed by counting colonies after culture the microbes adhered to HeLa cells. Although high CSH-expressing bacterial species showed greater adherence to HeLa cells and larger amounts of biofilm formation on polystyrene, the significant relationships within same species were not shown. In C. albicans, however, strong positive correlations were observed between CSH and biofilm formation (r =0.708; p < 0.05) or cell adhesion (r =0.509; p < 0.05). These results suggest that hydrophobic force of bacteria may play a minor role in adhesion and biofilm formation, but CSH of C. albicans may be an important factor for adherence on surface and biofilm forming process.
Subject(s)
Humans , Bacteria , Biofilms , Candida albicans , Candida , Cell Adhesion , HeLa Cells , Hydrocarbons , Hydrophobic and Hydrophilic Interactions , Klebsiella pneumoniae , Morganella morganii , Polystyrenes , Proteus mirabilis , Proteus vulgaris , Pseudomonas aeruginosa , Staphylococcus aureusABSTRACT
The aim of this study was to evaluate the color stability of 4-methacryloxyethyl trimellitate anhydride (4-META) / methyl methacrylate (MMA) & tri-n-butylborane (TBB) resin with different powder-liquid (P/L) ratios and powder colors after immersion in coffee. Experimental groups (Bondfill SB) were classified by the P/L ratio (0.8:1 / 1:1 / 1.2:1, weight [wt] %) and color of the powder (light / medium). Light-cured resin composite (Filtek Z350 XT flowable) was used as a control group. Each disk-shaped specimen of 7 groups (n = 8 for color difference, n = 10 for translucency parameter [TP]) was immersed in a staining solution of coffee for 4 weeks. The color of the specimen was measured at the time of baseline, 1 day, 1 week, 2 weeks, 3 weeks, and 4 weeks with a spectrophotometer. The color difference (ΔE) and changes in translucency parameter (ΔTP) were statistically analyzed by one-way analysis of variance (ANOVA), followed by Tukey's post-hoc test. Independent t-test was applied to evaluate the effect on the colors of the powder (α = 0.05). The values of color difference (ΔE) of the experimental groups were within the clinically acceptable threshold (ΔE < 3.3), whereas control group showed values over 3.3 after 1 week of immersion. The values of TP ranged from 9.58 to 13.28. The differences of TP (ΔTP) between baseline and 4 weeks were less than 1.0, except in the control group. Conclusively, self-cured resin composite showed excellent color stability in coffee for the period of this study regardless of different P/L ratios and powder colors.
Subject(s)
Coffee , ImmersionABSTRACT
PURPOSE: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. METHODS: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. RESULTS: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) and total β-catenin protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways were activated. CONCLUSIONS: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.
Subject(s)
Humans , Alkaline Phosphatase , Blotting, Western , Bone Regeneration , Calcium , Dental Cementum , Dental Prosthesis , Gene Expression , Glycogen Synthase , Guided Tissue Regeneration, Periodontal , Immunohistochemistry , JNK Mitogen-Activated Protein Kinases , Magnetic Fields , Miners , Osteoblasts , Periodontal Diseases , Periodontal Ligament , Phosphorylation , Polymerase Chain Reaction , Protein Kinases , Regeneration , Relative Biological Effectiveness , Reverse Transcription , RNA, Messenger , Signal Transduction , Wnt ProteinsABSTRACT
Biofilms are commonly associated with an increased risk of catheter-associated infection. To study the efficacy of materials designed to reduce biofilm formation, microbial biofilms on clinically used urinary catheter were examined. We performed 2, 3-bis (2-methyoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay to determine of biofilm formation ability and observed with scanning electron microscopy (SEM) to analyze biofilm architecture. Additionally, we calculated relative cell surface hydrophobicity (CSH) to measure hydrophobicity of microorganisms. On SEM, catheter surfaces made of latex or anti-infective (IC)-latex were rough but those of silicone, hydrogel-coated silicone (HCS), or silver-alloy-coated silicone (SCS) were relatively smoother. According to XTT reduction assay, biofilm formation was reduced on the surface of smooth silicone-based catheters compared to rough latex-based catheters. The greatest to lowest formation of microbial biofilm were as follows for these material types: silicone-elastomer-coated (SEC) latex > latex > silicone > IC-latex > HCS > SCS. Catheter materials can affect the microbial biofilm formations. First, rougher surfaces on the catheter made the microbial attachment easier and a greater amount of biofilm was formed. Second, when chemicals that inhibit growth and attachment of microorganisms on the inner and outer surfaces of the catheters were applied, the biofilm formation was inhibited. SCS was found to be the most effective in reducing the microbial biofilm formation. These results indicate that microbial biofilm formation may be closely related to the surface roughness and microbial CSH.
Subject(s)
Biofilms , Catheter-Related Infections , Catheters , Hydrophobic and Hydrophilic Interactions , Latex , Microscopy, Electron, Scanning , Silicon , Silicones , Urinary CathetersABSTRACT
In the past, computer-aided design/computer-aided manufacturing (CAD/CAM) technology was the closed system that users had to use the components of only one manufacturer. At present, it has changed to the open system with the flexibility to select and use the components of various manufacturers' components according to their needs. Despite the development of dental materials and prostheses manufacturing methods, denture manufacturing has followed conventional manufacturing methods for nearly 100 years. However, studies on CAD/CAM fabricated denture have been recently carried out to overcome the disadvantages of conventional denture manufacturing. Some commercialized products using milling or 3D printing have already been applied clinically. This case report confirms the possibility of CAD/CAM dentures using 3D face scan and compared them to conventionally fabricated dentures.
Subject(s)
Dental Materials , Denture, Complete , Dentures , Pliability , Printing, Three-Dimensional , Prostheses and ImplantsABSTRACT
PURPOSE: We aimed to investigate the gene expression of human gingival fibroblasts on microgroove surface using DNA microarray. MATERIALS AND METHODS: Microgrooves were applied on grade II titanium discs to have 0/0 µm (NE0, control group), 60/10 µm (E60/10, experimental group) of respective width/depth by photolithography. The entire surface of the microgrooved Ti substrata was further acid etched and used as the two experimental groups in this study. Human gingival fibroblasts were cultured in the experimental group and the control group, and total RNA was extracted. The oligonucleotide microarray was performed to confirm the changes of various gene expression levels between experimental group and control group. Changes of gene expression level were determined at the pathway level by mapping the expression results of DNA chips, using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. RESULTS: Gene expression levels on E60/10 and NE0 were analyzed, there were 123 genes showing significant differences in expression more than 1.5 times on E60/10 microgrooved surface compared to NE0 surface, and 19 genes showing significant differences in expression more than 2 times. The KEGG pathway analysis confirmed the changes in gene expression levels under experimental conditions. Cell signaling, proliferation, and activity among the various gene expression results were identified. CONCLUSION: Microgrooved surfaces induce gene expression changes and related cell signaling. According to the results of this study, microgrooves can be used as the surface of various biomaterials which need to improve cell activity through gene expression changes and activation of cell signaling.
Subject(s)
Humans , Biocompatible Materials , DNA , Fibroblasts , Gene Expression , Oligonucleotide Array Sequence Analysis , RNA , TitaniumABSTRACT
The retaining methods of implant prosthesis were classified into a screw-retained and a cement-retained type. A screw-retained prosthesis has many advantages, such as retrievability, preventing residual cement, while their disadvantages include the possibility of screw loosening and fracture, on the contrary advantages of cement-retained prosthesis are relatively low cost, but they are difficult to retrieve. To combine the advantages of both type, screw-cement retained prosthesis (SCRP) type have been introduced. But they still require ideal implant placement. So we introduce fiber post retained prosthesis without residual cement for preventing soft tissue trouble due to excessive cement.
ABSTRACT
When attempting to restore the oral function of a partially edentulous patient, there are a number of prosthetic treatment options available, depending on the structure of remaining teeth. For example, when only one set of maxillary and mandibular teeth are diagonally in place across from each other, it is difficult to gain stable occlusion. In this case, implants can be put in place at the corresponding edentulous area to achieve balance. By doing so, a stable occlusion can be achieved. For this case report, a patient with crossed occlusion after extraction was treated with maxillary RDP (removable dental prosthesis) and mandibular implant-supported RDP (removable dental prosthesis). Moreover, an implant fixture was placed under the posterior molar of the distal extension base diagonally across from the remaining maxillary teeth. Then, magnetic attachment was implemented. According to the patient who received the treatment, the result was functionally and aesthetically satisfactory.
Subject(s)
Humans , Dental Prosthesis , Molar , ToothABSTRACT
PURPOSE: Candida albicans (C. albicans) and Proteus species are causative agents in a variety of opportunistic nosocomial infections, and their ability to form biofilms is known to be a virulence factor. In this study, the influence of co-cultivation with Proteus vulgaris (P. vulgaris) and Proteus mirabilis (P. mirabilis) on C. albicans biofilm formation and its underlying mechanisms were examined. MATERIALS AND METHODS: XTT reduction assays were adopted to measure biofilm formation, and viable colony counts were performed to quantify yeast growth. Real-time reverse transcriptase polymerase chain reaction was used to evaluate the expression of yeast-specific genes (rhd1 and rbe1), filament formation inhibiting genes (tup1 and nrg1), and hyphae-related genes (als3, ece1, hwp1, and sap5). RESULTS: Candida biofilm formation was markedly inhibited by treatment with either living or heat-killed P. vulgaris and P. mirabilis. Proteus-cultured supernatant also inhibited Candida biofilm formation. Likewise, treatment with live P. vulgaris or P. mirabilis or with Proteus-cultured supernatant decreased expression of hyphae-related C. albicans genes, while the expression of yeast-specific genes and the filament formation inhibiting genes of C. albicans were increased. Heat-killed P. vulgaris and P. mirabilis treatment, however, did not affect the expression of C. albicans morphology-related genes. CONCLUSION: These results suggest that secretory products from P. vulgaris and P. mirabilis regulate the expression of genes related to morphologic changes in C. albicans such that transition from the yeast form to the hyphal form can be inhibited.