Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Radiation Oncology ; (6): 722-726, 2022.
Article in Chinese | WPRIM | ID: wpr-956902

ABSTRACT

Objective:To investigate the feasibility of surface-guided hypo-fractionated radiotherapy for intracranial metastasis with open face mask immobilization.Methods:Nineteen patients treated with hypo- fractionated radiotherapy for intracranial metastasis in our hospital were included. Before the start of treatment, each patient underwent simulation with open face mask immobilization. During the treatment, cone-beam CT(CBCT)images were collected for verification each time. Laser-guided positioning was used for the first time in the treatment, and surface images were captured after six-dimensional position correction as the reference images for subsequent treatment. Subsequent treatment was randomly divided into laser-guided positioning group(LG, 85/F)and optical surface-guided positioning group(SG, 101/F). The six-dimensional error data of patients with two positioning methods were compared and expressed as mean ± standard deviation. Meanwhile, the correlation and consistency between the optical surface error data and the gold standard CBCT error data were compared in the laser-guided fraction. GraphPad Prism 6.0 software was used for data processing and mapping, and SPSS 21.software was used for mean analysis and normality test. Pearson correlation analysis was used to analyze the correlation, and Bland-Altman plot analysis was used to test the coincidence between two methods.Results:Compared with the laser-guided positioning, the 3D error of optical surface-guided positioning was reduced from(0.35±0.16)cm to(0.14±0.07)cm. The Pearson coefficient of correlation along all three directions was less than 0.01,R 2 was 0.91,0.70 and 0.78 on Lat, Lng and Vrt, and R 2 was 0.75,0.85 and 0.77 on Pitch, Roll and Rtn(all P<0.01), respectively. The measurement results of two methods were positively correlated. The Bland-Altman plot analysis showed that the 95% limits of agreement were within preset 3 mm tolerance([-0.29 cm, 0.19 cm], [-0.25 cm, 0.25 cm], [-0.27 cm, 0.19 cm]), and the 95% limits of agreement were within preset 3° tolerance(Pitch[-1.76°,1.76°], Roll[-1.54°,1.60°], ROT[-2.18°,1.69°]), indicating agreement between two methods. Conclusions:The optical surface-guided positioning can reduce the setup errors in the hypo-fractionated radiotherapy for intracranial metastasis with open face mask immobilization. The optical surface error and CBCT error have good correlation and agreement.

2.
Chinese Journal of Radiation Oncology ; (6): 648-652, 2021.
Article in Chinese | WPRIM | ID: wpr-910443

ABSTRACT

By using optical surface guided radiotherapy technology, the principle of three-dimensional body surface imaging is employed to obtain body surface images in a real-time manner. By comparing with reference images, it can verify the position before treatment, and realize real-time monitoring and gated treatment during treatment. It is a non-invasive and non-radiation technology, which is mainly applied in the treatment of intracranial, head and neck, chest and abdomen, breast, extremities and pediatric tumors. The research progresses consist of four aspects including less body surface markers, less restraint fixation, safer collision prediction and more accurate real-time tracking.

3.
Chinese Journal of Radiation Oncology ; (6): 258-261, 2021.
Article in Chinese | WPRIM | ID: wpr-884553

ABSTRACT

Objective:To evaluate the application of visual feedback coaching method, which is embedded in an optical surface monitoring system, in deep inspiration breath holding during the radiotherapy in left breast cancer patients after breast-conserving surgery.Methods:Thirty patients with left breast cancer, who were scheduled to receive the whole breast radiotherapy after breast-conserving surgery, met the requirements of deep inspiration breath holding after respiratory coaching with the visual feedback coaching module in the optical surface monitoring system. Active breathing control equipment was used to control breath-holding state and CT simulation was performed. During treatment, optical surface monitoring system was used to guide radiotherapy. All patients were randomly divided into two groups. In group A ( n=15), visual feedback respiratory training method was utilized and not employed in group B ( n=15). In group A, the visual feedback coaching bar of the optical surface monitoring system was implemented, while audio interactive method was employed to guide patients to hold their breath. Real-time data of optical body surface monitoring were used to compare the interfraction reproducibility and intrafraction stability of breath holding fraction between two groups. Besides, the number of breath holding and treatment time per fraction were also compared. GraphPad prism 6.0 software was used for data processing and mapping, and SPSS 21.0 software was used for analyzing mean value and normality testing. Results:Compared with the control group, the reproducibility in the experiment group was reduced from 1.5 mm to 0.7 mm, the stability was reduced from 1.1 mm to 0.8 mm, the mean number of breath holding required per fraction was decreased from 4.6 to 2.4, the mean beam-on time per fraction from 336 s to 235 s, and the treatment time per fraction was shortened from 847 s to 602 s (all P<0.05), respectively. Conclusions:The application of visual feedback coaching method can improve the reproducibility and stability of breath holding during radiotherapy for left breast cancer, and it can also effectively reduce the number of breath holding and shorten the treatment time per fraction.

4.
Chinese Journal of Radiation Oncology ; (6): 278-282, 2020.
Article in Chinese | WPRIM | ID: wpr-868595

ABSTRACT

Objective:To establish the basic procedures of the application of optical surface monitoring system (OSMS) in the deep inspiration breath hold (DIBH) radiotherapy for patients with left sided breast cancer and compare the performance of OSMS and cone-beam CT (CBCT) in the determination of the set-up errors of DIBH radiotherapy for patients with left sided breast cancer.Methods:Twenty patients with left sided breast cancer received DIBH radiotherapy. Through the registration of CBCT images with the planning CT images, and the registration of OSMS radiography images with the outer contour of the body surface, translational set-up errors and rotational errors were determined along the lateral-medial ( Rx), superior-inferior ( Ry) and anterior-posterior ( Rz) directions. Pearson correlation analysis was performed to evaluate the correlation of the set-up errors determined by two methods, and Bland- Altman plot analysis was used to assess the coincidence of these two methods. Results:Two methods were positively correlated. The Rz volume was 0.84, 0.74 and 0.84 in the x, y and z directions, and 0.65, 0.41 and 0.54 in the Rx, Ry and Rz directions, respectively (all P<0.01). The 95% CI of agreement were within preset 5 mm tolerance (-0.37-0.42cm, -0.39-0.41cm, -0.29-0.49cm ) in x, y and z directions for two methods. The 95% CI of agreement were within preset 3 ° tolerance -2.9°-1.4°, -2.6°-1.4°, -2.4°-2.5°in Rx, Ry and Rz directions for two methods. The system errors of 20 patients with left sided breast cancer receiving DIBH radiotherapy were <0.18cm and the random errors were <0.24cm. Conclusions:OSMS is equivalent to CBCT in the determination and stimulation of set-up errors for patients with left sided breast cancer receiving DIBH radiotherapy. The combination of CBCT and OSMS is a safe and reliable method.

SELECTION OF CITATIONS
SEARCH DETAIL