Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Laboratory Medicine Online ; : 283-294, 2020.
Article in English | WPRIM | ID: wpr-902680

ABSTRACT

Background@#We sought to compare the performance of three commercially available automated urine sediment analyzers that represent the current urine sediment analysis technology. @*Methods@#A total of 232 patient samples were analyzed using manual microscopy and three automated analyzers: IRIS Iq200 (Beckman Coulter, USA), UF-1000i (Sysmex, Japan), and Cobas u701 (Roche, Switzerland). We analyzed precision, linearity, carry-over, concordance rate, and agreement between the three analyzers and manual microscopy. @*Results@#The repeatability and within-laboratory precision showed results similar to those of previous studies. All analyzers showed excellent linearity. The carry-over rates were within 1%. The correlation coefficient (r) between the three analyzers and manual microscopy was good. Regarding red blood cell (RBC), the UF-1000i showed a better concordance rate (90.52%) with manual microscopy than the other two analyzers and the agreement was substantial for UF-1000i (κ=0.63) and IRIS Iq200 (κ=0.61). Regarding white blood cell (WBC), Cobas u701 showed the best concordance rate (96.55%) and the agreement was moderate for IRIS Iq200 (κ=0.57) and Cobas u701 (κ=0.56), and fair for UF-1000i (κ=0.47). Regarding epithelial cell (EPI), IRIS Iq200 showed the highest concordance rate (99.2%) and the agreement was moderate for IRIS Iq200 (κ=0.59) and Cobas u701 (κ=0.54), and fair for UF-1000i (κ=0.40). @*Conclusions@#IRIS Iq200 offered the best agreement with manual microscopy for WBC and EPI count, while UF-1000i showed a better agreement for RBC count. The agreement is insufficient for fully replacing the manual microscopy.

2.
Laboratory Medicine Online ; : 283-294, 2020.
Article in English | WPRIM | ID: wpr-894976

ABSTRACT

Background@#We sought to compare the performance of three commercially available automated urine sediment analyzers that represent the current urine sediment analysis technology. @*Methods@#A total of 232 patient samples were analyzed using manual microscopy and three automated analyzers: IRIS Iq200 (Beckman Coulter, USA), UF-1000i (Sysmex, Japan), and Cobas u701 (Roche, Switzerland). We analyzed precision, linearity, carry-over, concordance rate, and agreement between the three analyzers and manual microscopy. @*Results@#The repeatability and within-laboratory precision showed results similar to those of previous studies. All analyzers showed excellent linearity. The carry-over rates were within 1%. The correlation coefficient (r) between the three analyzers and manual microscopy was good. Regarding red blood cell (RBC), the UF-1000i showed a better concordance rate (90.52%) with manual microscopy than the other two analyzers and the agreement was substantial for UF-1000i (κ=0.63) and IRIS Iq200 (κ=0.61). Regarding white blood cell (WBC), Cobas u701 showed the best concordance rate (96.55%) and the agreement was moderate for IRIS Iq200 (κ=0.57) and Cobas u701 (κ=0.56), and fair for UF-1000i (κ=0.47). Regarding epithelial cell (EPI), IRIS Iq200 showed the highest concordance rate (99.2%) and the agreement was moderate for IRIS Iq200 (κ=0.59) and Cobas u701 (κ=0.54), and fair for UF-1000i (κ=0.40). @*Conclusions@#IRIS Iq200 offered the best agreement with manual microscopy for WBC and EPI count, while UF-1000i showed a better agreement for RBC count. The agreement is insufficient for fully replacing the manual microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL