Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Yonsei Medical Journal ; : 834-841, 2012.
Article in English | WPRIM | ID: wpr-93570

ABSTRACT

PURPOSE: To investigate the anti-tumor effect of capsaicin on human pharyngeal squamous carcinoma cells (FaDu). MATERIALS AND METHODS: The expression of apoptosis/cell cycle-related proteins (or genes) was examined by reverse transcriptase-polymerase chain reaction, western blotting and ELISA methods, while the apoptotic cell population, cell morphology and DNA fragmentation levels were assessed using flow cytometry, fluorescence microscopy and agarose gel electrophoresis. RESULTS: Capsaicin was found to inhibit the growth and proliferation of FaDu cells in a dose- and time-dependent manner. Apoptotic cell death was confirmed by observing increases in nuclear condensation, nuclear DNA fragmentation and sub-G1 DNA content. The observed increase in cytosolic cytochrome c, activation of caspase 3 and PARP (p85) levels following capsaicin treatment indicated that the apoptotic response was mitochondrial pathway-dependent. Gene/protein expression analysis of Bcl-2, Bad and Bax further revealed decreased anti-apoptotic Bcl-2 protein and increased pro-apoptotic Bad/Bax expression. Furthermore, capsaicin suppressed the cell cycle progression at the G1/S phase in FaDu cells by decreasing the expression of the regulators of cyclin B1 and D1, as well as cyclin-dependent protein kinases cdk-1, cdk-2 and cdk-4. CONCLUSION: Our current data show that capsaicin induces apoptosis in FaDu cells and this response is associated with mitochondrial pathways, possibly by mediating cell cycle arrest at G1/S.


Subject(s)
Humans , Apoptosis/drug effects , Blotting, Western , Capsaicin/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Microscopy, Fluorescence , Pharyngeal Neoplasms/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , bcl-2-Associated X Protein/genetics , bcl-Associated Death Protein/genetics
2.
The Korean Journal of Physiology and Pharmacology ; : 153-158, 2012.
Article in English | WPRIM | ID: wpr-728107

ABSTRACT

Cellular effects of ethanol in YD-15 tongue carcinoma cells were assessed by MTT assay, caspase activity assay, Western blotting and flow cytometry. Ethanol inhibited the growth and proliferation of YD-15 cells in a dose- and time-dependent manner in an MTT assay. The effects of ethanol on cell cycle control at low percent range of ethanol concentration (0 to 1.5%), the condition not inducing YD-15 cell death, was investigated after exposing cells to alcohol for a certain period of time. Western blotting on the expression of cell cycle inhibitors showed that p21 and p27 was up-regulated as ethanol concentration increases from 0 to 1.5% whilst the cell cycle regulators, cdk1, cdk2, and cdk4 as well as Cyclin A, Cyclin B1 and Cyclin E1, were gradually down-regulated. Flow cytometric analysis of cell cycle distribution revealed that YD-15 cells exposed to 1.5% ethanol for 24 h was mainly arrested at G2/M phase. However, ethanol induced apoptosis in YD-15 cells exposed to 2.5% or higher percent of ethanol. The cleaved PARP, a marker of caspase-3 mediated apoptosis, and the activation of caspase-3 and -7 were detected by caspase activity assay or Western blotting. Our results suggest that ethanol elicits inhibitory effect on the growth and proliferation of YD-15 tongue carcinoma cells by mediating cell cycle arrest at G2/M at low concentration range and ultimately induces apoptosis under the condition of high concentration.


Subject(s)
Apoptosis , Blotting, Western , Caspase 3 , Cell Cycle , Cell Cycle Checkpoints , Cell Death , Cyclin A , Cyclin B1 , Cyclins , Ethanol , Flow Cytometry , Negotiating , Tongue
SELECTION OF CITATIONS
SEARCH DETAIL