Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Biol. Res ; 45(3): 269-277, 2012. ilus, graf
Article in English | LILACS | ID: lil-659284

ABSTRACT

Mesenchymal stem cells (MSCs) are now known to display not only stem cell multipotency, but also robust antiinflammatory and regenerative properties. After widespread in-vitro and in-vivo preclinical testing, autologous and allogeneic MSCs have been applied in a range of immune mediated conditions, including graft versus host disease, Crohn's disease, multiple sclerosis, refractory systemic lupus erythematosus and systemic sclerosis. Current data suggests that MSCs may not only replace diseased tissues, but also exert several trophic, regenerative and antiinflammatory effects. While the clinical outcome in case reports and phase I-II trials seems occasionally striking, these limited results point to the need to perform controlled multicenter trials. Future advances from stem cell science can be expected to pinpoint significant MSC subpopulations and/or stem cell markers for improved regenerative or immunoregulatory properties.


Subject(s)
Humans , Autoimmune Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Clinical Trials as Topic , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology
2.
Biol. Res ; 45(1): 51-60, 2012. ilus
Article in English | LILACS | ID: lil-626747

ABSTRACT

Acute renal failure (ARF) can be caused by injuries that induce tissue hypoxia, which in turn can trigger adaptive or inflammatory responses. We previously showed the participation of basic fibroblast growth factor (FGF-2) in renal repair. Based on this, the aim of this study was to analyze the effect of FGF-2 signaling pathway manipulation at hypoxia-induced protein levels, as well as in key proteins from the vasoactive systems of the kidney. We injected rat kidneys with FGF-2 recombinant protein (r-FGF) or FGF-2 receptor antisense oligonucleotide (FGFR2-ASO) after bilateral ischemia, and evaluated the presence of iNOS, EPO and HO-1, in representation of hypoxia-induced proteins, as well as COX-2, renin, kallikrein, and B2KR, in representation of the vasoactive systems of the kidney. A reduction in iNOS, HO-1, EPO, renin, kallikrein, B2KR, and in renal damage was observed in animals treated with r-FGF. The opposite effect was found with FGF-2 receptor down-regulation. In contrast, COX-2 protein levels were higher in kidneys treated with r-FGF and lower in those that received FGFR2-ASO, as compared to saline treated kidneys. These results suggest that the protective role of FGF-2 in the pathogenesis of ARF induced by I/R is a complex process, through which a differential regulation of metabolic pathways takes place.


Subject(s)
Animals , Male , Rats , Acute Kidney Injury/metabolism , Cell Hypoxia/physiology , /metabolism , /pharmacology , Kidney/drug effects , Nitric Oxide Synthase/metabolism , Reperfusion Injury/physiopathology , Acute Kidney Injury/pathology , Disease Models, Animal , Erythropoietin/metabolism , /analysis , /metabolism , Heme Oxygenase-1/metabolism , Kallikreins/analysis , Kidney/blood supply , Rats, Sprague-Dawley , /analysis
SELECTION OF CITATIONS
SEARCH DETAIL