ABSTRACT
Objective To evaluate the role of calcium channel in the mechanism of the generation and maintenance of bursting firing of substantia nigra pars compacta (SNc) dopaminergic neurons in rats.Methods Using the patch clamp technique,we observed the firing pattern switching features after adding 10 μmol/L N-methyl-D-aspartic acid (NMDA),compared the changes of whole-calcium current and L-type calcium current with or without NMDA,and analyzed the correlation between the generation of burst firing and L-type calcium channel activation.Results After NMDA treatment,the firing pattern of SNc dopaminergic neurons changed to burst firing,which was compromised by a charastistic high plateau potential and series of action potential on it.The current density of L-type calcium current increased significantly after adding NMDA,which,from (2.86 ±0.26) pA/pF (n =28),significantly increased to (3.75 ± 0.18) pA/pF (n =34 ; t =7.52,P =0.002 8).The high plateau potential was almost abolished with the application of verapamil,a specific antagonist of L-type calcium channel.Consiusion NMDA could induce the firing pattern changed to burst firing in SNc dopaminergic neurons,while L-type calcium channel contributes to the process of generation and maintenance of burst firing.