Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Journal of Biotechnology ; (12): 2126-2140, 2023.
Article in Chinese | WPRIM | ID: wpr-981194

ABSTRACT

ω-transaminase (ω-TA) is a natural biocatalyst that has good application potential in the synthesis of chiral amines. However, the poor stability and low activity of ω-TA in the process of catalyzing unnatural substrates greatly hampers its application. To overcome these shortcomings, the thermostability of (R)-ω-TA (AtTA) from Aspergillus terreus was engineered by combining molecular dynamics simulation assisted computer-aided design with random and combinatorial mutation. An optimal mutant AtTA-E104D/A246V/R266Q (M3) with synchronously enhanced thermostability and activity was obtained. Compared with the wild- type (WT) enzyme, the half-life t1/2 (35 ℃) of M3 was prolonged by 4.8-time (from 17.8 min to 102.7 min), and the half deactivation temperature (T1050) was increased from 38.1 ℃ to 40.3 ℃. The catalytic efficiencies toward pyruvate and 1-(R)-phenylethylamine of M3 were 1.59- and 1.56-fold that of WT. Molecular dynamics simulation and molecular docking showed that the reinforced stability of α-helix caused by the increase of hydrogen bond and hydrophobic interaction in molecules was the main reason for the improvement of enzyme thermostability. The enhanced hydrogen bond of substrate with surrounding amino acid residues and the enlarged substrate binding pocket contributed to the increased catalytic efficiency of M3. Substrate spectrum analysis revealed that the catalytic performance of M3 on 11 aromatic ketones were higher than that of WT, which further showed the application potential of M3 in the synthesis of chiral amines.


Subject(s)
Transaminases/chemistry , Molecular Docking Simulation , Amines/chemistry , Pyruvic Acid/metabolism , Enzyme Stability
2.
Chinese Journal of Biotechnology ; (12): 636-646, 2019.
Article in Chinese | WPRIM | ID: wpr-771345

ABSTRACT

Glutamate decarboxylase, a unique pyridoxal 5'-phosphate-dependent enzyme, catalyzes α-decarboxylation of L-glutamate to γ-aminobutyrate. However, glutamate decarboxylase from different sources has the common problem of poor thermostability that affects its application in industry. In this study, proline was introduced at 13 different positions in glutamate decarboxylase by using the design strategy of homologous sequence alignment between Thermococcus kodakarensis and Lactobacillus brevis CGMCC No.1306. A mutant enzyme G364P with higher thermostability was obtained. Compared to the wild type, thermostability of the mutant G364P was significantly improved, the half-life time (t1/2) at 55 °C and the semi-inactivation temperature (T₅₀ ¹⁵) of the mutant G364P increased 19.4 min and 5.3 °C, respectively, while kcat/Km of the mutant enzyme remained nearly unchanged. Further analysis of their thermostability by molecular dynamics simulations were performed. The root mean square deviation of G364P and root mean square fluctuation in the loop region including G364 were lower than the wild type at 313 K for 10 ns, and G364P increased one hydrophobic interaction in the loop region. It proves that mutation of flexible 364-Gly to rigid proline endows glutamate decarboxylase with enhanced thermostability.


Subject(s)
Glutamate Decarboxylase , Glutamic Acid , Levilactobacillus brevis , Molecular Dynamics Simulation , Proline
3.
Chinese Journal of Biotechnology ; (12): 1923-1933, 2017.
Article in Chinese | WPRIM | ID: wpr-243658

ABSTRACT

Chiral amines are important building blocks for the synthesis of pharmaceutical products and fine chemicals. Highly stereoselective synthesis of chiral amines compounds through asymmetric amination has attracted more and more attention. ω-transaminases (ω-TAs) are a promising class of natural biocatalysts which provide an efficient and environment-friendly access to production of chiral amines with stringent enantioselectivity and excellent catalytic efficiency. Compared with (S)-ω-TA, the research focused on (R)-ω-TA was relatively less. However, increasing demand for chiral (R)-amines as pharmaceutical intermediates has rendered industrial applications of (R)-ω-TA more attractive. Improving the thermostability of (R)-ω-TA with potential biotechnological application will facilitate the preparation of chiral amines. In this study, the dynamic surface loop with higher B-factor from Aspergillus terreus (R)-ω-TA was predicted by two computer softwares (PyMOL and YASARA). Then mutant enzymes were obtained by deleting amino acid residues of a dynamic surface loop using site-directed mutagenesis. The results showed that the best two mutants R131del and P132-E133del improved thermostability by 2.6 ℃ and 0.9 ℃ in T₅₀¹⁰ (41.1 ℃ and 39.4 ℃, respectively), and 2.2-fold and 1.5-fold in half-life (t1/2) at 40 ℃ (15.0 min and 10.0 min, respectively), compared to that of wild type. Furtherly, the thermostability mechanism of the mutant enzymes was investigated by molecular dynamics (MD) simulation and intermolecular interaction analysis. R131del in the loop region has lower root mean square fluctuation (RMSF) than the wild type at 400 K for 10 ns, and mutant enzyme P132-E133del increases four hydrogen bonds in the loop region. In this study, we obtain two stability-increased mutants of (R)-ω-TA from A. terreus by deleting its dynamic surface loop and also provide methodological guidance for the use of rational design to enhance the thermal stability of other enzymes.

4.
Chinese Journal of Biotechnology ; (12): 31-40, 2016.
Article in Chinese | WPRIM | ID: wpr-242294

ABSTRACT

Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.


Subject(s)
Glutamate Decarboxylase , Metabolism , Half-Life , Industrial Microbiology , Levilactobacillus brevis , Mutagenesis, Site-Directed , Mutation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL