Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Sheng Li Xue Bao ; (6): 179-187, 2023.
Article in Chinese | WPRIM | ID: wpr-980995

ABSTRACT

The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.


Subject(s)
Rats , Mice , Animals , Rats, Sprague-Dawley , Angiotensin II/pharmacology , Fibroblasts , Mice, Inbred C57BL , Fibrosis , Collagen/pharmacology , Collagen Type I/metabolism , RNA, Messenger/metabolism , Myocardium/pathology
2.
Chin. j. integr. med ; Chin. j. integr. med;(12): 454-461, 2019.
Article in English | WPRIM | ID: wpr-771443

ABSTRACT

OBJECTIVE@#To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels.@*METHODS@#The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA.@*RESULTS@#PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (P<0.01) and allodynia after intra-plantar formalin (P<0.01) in mice. PA also up-regulated COX2 mRNA and protein (P<0.05) with a down-regulation of MOR (P<0.05) both in in vivo and in vitro experiments, which devote to the analgesic effect of PA. A decrease in the intracellular calcium level (P<0.05) induced by PA may play an important role in its anti-nociceptive effect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect.@*CONCLUSIONS@#Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.

3.
Article in English | WPRIM | ID: wpr-812062

ABSTRACT

Pomegranate leaf (PGL) has a definite role in regulating lipid metabolism. However, pharmacokinetic results show the main active ingredient, ellagic acid, in PGL has lower oral bioavailability, suggesting that the lipid-lowering effect of PGL may act through inhibiting lipid absorption in the small intestine. Our results demonstrated that pomegranate leaf and its main active ingredients (i.e., ellagic acid, gallic acid, pyrogallic acid and tannic acid) were capable of inhibiting pancreatic lipase activity in vitro. In computational molecular docking, the four ingredients had good affinity for pancreatic lipase. Acute lipid overload experiments showed that a large dosage of PGL significantly reduced serum total cholesterol (TG) and triglycerides (TC) levels in addition to inhibiting intestinal lipase activity, which demonstrated that PGL could inhibit lipase activity and reduce the absorption of lipids. We also found that PGL could reverse the reduced tight-junction protein expression due to intestinal lipid overload, promote Occludin and Claudin4 expression in the small intestine, and enhance the intestinal mucosal barrier. In conclusion, we demonstrated that PGL can inhibit lipid absorption and reduce blood TG and TC by targeting pancreatic lipase, promoting tight-junction protein expression and thereby preventing intestinal mucosa damage from an overload of lipids in the intestine.


Subject(s)
Animals , Humans , Male , Mice , Enzyme Inhibitors , Chemistry , Hyperlipidemias , Drug Therapy , Metabolism , Intestinal Absorption , Intestine, Small , Metabolism , Kinetics , Lipase , Chemistry , Metabolism , Lipid Metabolism , Lythraceae , Chemistry , Mice, Inbred ICR , Plant Extracts , Chemistry , Plant Leaves , Chemistry , Triglycerides , Metabolism
4.
Article in English | WPRIM | ID: wpr-812125

ABSTRACT

Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments.


Subject(s)
Animals , Humans , Male , Mice , Berberine , Pharmacology , HSP70 Heat-Shock Proteins , Genetics , Metabolism , Heat Stress Disorders , Drug Therapy , Genetics , Metabolism , Hot Temperature , Mice, Inbred ICR , TATA Box , Tumor Necrosis Factor-alpha , Genetics , Metabolism
5.
Article in English | WPRIM | ID: wpr-812604

ABSTRACT

Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation.


Subject(s)
Animals , Humans , Male , Mice , Benzopyrans , Brain Ischemia , Drug Therapy , Genetics , Allergy and Immunology , Metabolism , Cells, Cultured , Drugs, Chinese Herbal , Glucose , Metabolism , Indenes , Mice, Inbred ICR , Neurons , Allergy and Immunology , Nod2 Signaling Adaptor Protein , Genetics , Metabolism , Oxygen , Metabolism , Tumor Necrosis Factor-alpha , Genetics , Allergy and Immunology
6.
Zhongguo Zhong Yao Za Zhi ; (24): 3142-3147, 2014.
Article in Chinese | WPRIM | ID: wpr-327827

ABSTRACT

Pineapple (Ananas comosus) leaves contain mainly phenolic components with antioxidant and hypolipidemic effects. One of the principle components is p-coumaric acid. In this study, the transport behavior of p-coumaric acid, was observed after the administration of pineapple leaf phenols in vitro. Simultaneously, the effect of the phenols on glucose, total cholesterol and triglycerides transportation and metabolism in HepG2 cells was also observed. The results showed that the phenols had good transport characteristics. 5 min after the administration, p-coumaric acid of the phenols could be detected, and the content of p-coumaric acid reached the peak concentration after 60 min of the administration. p-coumaric acid of phenols have time-and dose-dependent manner. While promoting glucose transporter (GLUT4) and low density lipoprotein receptor (LDLR) expression, the phenols decreased intracellular lipid content. This reduction of intracellular lipid content was highly correlated with the promotion of lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) expression, while the reduction of intracellular glucose levels was correlated with glycogen synthesis in the cells.


Subject(s)
Humans , Ananas , Chemistry , Biological Transport , Cholesterol , Metabolism , Glucose , Metabolism , Hep G2 Cells , Lipid Metabolism , Plant Extracts , Pharmacology , Plant Leaves , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL