ABSTRACT
As one of the "Three Drugs Three Prescriptions" anti-COVID-19 traditional Chinese medicine, Jinhua Qinggan granules (JHQG) has been proved to have clear clinical effects. With complex medicinal flavors and ingredients, there is no systematic research report on chemical composition in vivo or in vitro. An ultrahigh pressure liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS) method was developed in this study to identify the components of the anti-COVID-19 traditional Chinese medicine JHQG granules. Analyze the collected rat plasma samples after administration and explore the exposed components in rats within 8 hours after intragastric administration. Preliminary pharmacokinetic analysis was then performed on this basis. Through UPLC-QTOF/MS analysis and verification by standard products, a total of 77 chemical components in JHQG formula have been identified, among which 22 compounds were highly exposed in vivo, mainly derived from three medicinal materials of honeysuckle, scutellaria and forsythia. Through the assessment of the blood drug concentration by the compartment model, 6 PK parameters of 4 high-exposure chemical components have been obtained, clarifying the metabolic characteristics of the main exposed components in JHQG briefly. The method is simple, efficient, sensitive and accurate and provides research basis to the clarification of the pharmacodynamics material basis and mechanism of JHQG, which has certain reference significance for the basics and applications research of the traditional Chinese medicine prescriptions in fighting the SARS-CoV-2.