ABSTRACT
Purpose@#Targeted next-generation sequencing (NGS) panels for solid tumors have been useful in clinical framework for accurate tumor diagnosis and identifying essential molecular aberrations. However, most cancer panels have been designed to address a wide spectrum of pan-cancer models, lacking integral prognostic markers that are highly specific to gliomas. @*Materials and Methods@#To address such challenges, we have developed a glioma-specific NGS panel, termed “GliomaSCAN,” that is capable of capturing single nucleotide variations and insertion/deletion, copy number variation, and selected promoter mutations and structural variations that cover a subset of intron regions in 232 essential glioma-associated genes. We confirmed clinical concordance rate using pairwise comparison of the identified variants from whole exome sequencing (WES), immunohistochemical analysis, and fluorescence in situ hybridization. @*Results@#Our panel demonstrated high sensitivity in detecting potential genomic variants that were present in the standard materials. To ensure the accuracy of our targeted sequencing panel, we compared our targeted panel to WES. The comparison results demonstrated a high correlation. Furthermore, we evaluated clinical utility of our panel in 46 glioma patients to assess the detection capacity of potential actionable mutations. Thirty-two patients harbored at least one recurrent somatic mutation in clinically actionable gene. @*Conclusion@#We have established a glioma-specific cancer panel. GliomaSCAN highly excelled in capturing somatic variations in terms of both sensitivity and specificity and provided potential clinical implication in facilitating genome-based clinical trials. Our results could provide conceptual advance towards improving the response of genomically guided molecularly targeted therapy in glioma patients.
ABSTRACT
Bis (Bag-3, CAIR), a Bcl-2-interacting protein, promotes the anti-apoptotic activity of Bcl-2 and increased levels of Bis have been observed in several disease models. The involvement of Bcl-2 and some Bcl-2-binding proteins in differentiation has recently been reported. However, the relevance of Bis to cellular differentiation remains unknown. The findings herein show that Bis expression is up-regulated during the differentiation of HL-60 cells. To investigate the effect of Bis expression on differentiation, we established Bis-overexpressing HL-60 cells (HL-60-bis). HL-60-bis cells have a low nuclear: cytoplasmic ratio and indented nucleus in Wright- Giemsa staining, and an increased expression of CD11b in immunofluorescence study, indicating the promotion of differentiation. The overexpression of Bis also resulted in a retarded cell growth rate, accompanied by the accumulation of HL-60 cells at the G0/G1 phase of the cell cycle, which was sustained during the differentiation process. Western blot analysis revealed that the expression of p27, a representative inducer of cell cycle arrest at the G1 phase, was increased 2.5-fold in HL-60-bis cells compared to HL-60-neo cells. These results suggest that the Bis induced growth inhibition of HL-60 cells promotes G0/G1 phase arrest via up-regulation of p27, which seems to be a prerequisite for differentiation. Further studies will be required to define the exact roles of Bis on cellular differentiation more precisely.