Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Chinese Journal of Oncology ; (12): 919-925, 2023.
Article in Chinese | WPRIM | ID: wpr-1045822

ABSTRACT

Objective: To investigate the molecular mechanism of how lactate induces high mobility group box 1 (HMGB1) release. Methods: Gastric cancer HGC-27 cells were divided into the control group and the lactate group (The cells were treated with lactate for 6 h). The level of HMGB1 in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA), the localization of HMGB1 was detected using laser confocal microscopy, and the nuclear translocation of HMGB1 was detected using the nucleoplasmic separation assay. The phosphorylation and acetylation levels of HMGB1 were determined by co-immunoprecipitation, and Western blot was used to measure the phosphorylation of Akt and protein kinase C (PKC). HGC-27 cells were first treated with lactate and LY294002, the inhibitor of Akt, and then the phosphorylation of HMGB1 and Akt was analyzed by co-immunoprecipitation and Western blot, respectively. The localization of HMGB1 in cells was detected by laser confocal microscopy. EdU and Transwell assays were used to detect the proliferation and migration abilities of HGC-27 cells, respectively. HGC-27 cells were then injected into the BALB/C null mice for subcutaneous tumor implantation. Mice in the lactate group were intraperitoneally injected with lactate (0.2 g/kg/2 d), while those in the control group were intraperitoneally injected with an equal amount of PBS for 20 consecutive days. ELISA was used to detect the HMGB1 levels in the blood samples taken from the medial canthus vein of the mice, while co-immunoprecipitation and Western blot were used to detect the phosphorylation of HMGB1 and Akt in tumor tissue proteins, respectively. Results: The release levels of HMGB1 in the lactate group were (2 995.00±660.91) pg/ml and (696.33±22.03) pg/ml, after lactate treatment for 6 h and 12 h, respectively, both higher than those in the control group (485.00±105.83) pg/ml (P<0.001 and P=0.028, respectively). After lactate treatment for 6 h, the relative expression of HMGB1 protein in the cytoplasm of HGC-27 cells was 1.13±0.09, higher than that of the control group (0.83±0.07, P=0.001), while the relative expression of HMGB1 in the nucleus was 0.79±0.06, lower than that of the control group (1.07±0.06, P=0.007). The phosphorylation level of HMGB1 reached 1.41±0.09, which was higher than that of the control group (0.97±0.10, P=0.031). The phosphorylation level of Akt was 11.16±0.06, higher than that of the control group (0.91±0.022, P=0.002). The phosphorylation level and nuclear translocation of HMGB1 induced by lactate decreased obviously after Akt inhibition; the proliferation and migration abilities induced by lactate were also obviously inhibited after Akt inhibition. In vivo, the HMGB1 level in the peripheral blood was (1 280.70±389.66) pg/ml in the lactate group, which was obviously higher than that in the control group (595.11±44.75) pg/ml (P=0.008), and the phosphorylation levels of HMGB1 and Akt in tumor tissues in the lactate group were obviously enhanced compared with the control group. Conclusion: Lactate induces HMGB1 release through enhancing HMGB1 phosphorylation via the Akt signaling pathway.


Subject(s)
Mice , Animals , Stomach Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , HMGB1 Protein/metabolism , Phosphorylation , Lactic Acid , Mice, Inbred BALB C , Signal Transduction
2.
Chinese Journal of Oncology ; (12): 919-925, 2023.
Article in Chinese | WPRIM | ID: wpr-1046145

ABSTRACT

Objective: To investigate the molecular mechanism of how lactate induces high mobility group box 1 (HMGB1) release. Methods: Gastric cancer HGC-27 cells were divided into the control group and the lactate group (The cells were treated with lactate for 6 h). The level of HMGB1 in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA), the localization of HMGB1 was detected using laser confocal microscopy, and the nuclear translocation of HMGB1 was detected using the nucleoplasmic separation assay. The phosphorylation and acetylation levels of HMGB1 were determined by co-immunoprecipitation, and Western blot was used to measure the phosphorylation of Akt and protein kinase C (PKC). HGC-27 cells were first treated with lactate and LY294002, the inhibitor of Akt, and then the phosphorylation of HMGB1 and Akt was analyzed by co-immunoprecipitation and Western blot, respectively. The localization of HMGB1 in cells was detected by laser confocal microscopy. EdU and Transwell assays were used to detect the proliferation and migration abilities of HGC-27 cells, respectively. HGC-27 cells were then injected into the BALB/C null mice for subcutaneous tumor implantation. Mice in the lactate group were intraperitoneally injected with lactate (0.2 g/kg/2 d), while those in the control group were intraperitoneally injected with an equal amount of PBS for 20 consecutive days. ELISA was used to detect the HMGB1 levels in the blood samples taken from the medial canthus vein of the mice, while co-immunoprecipitation and Western blot were used to detect the phosphorylation of HMGB1 and Akt in tumor tissue proteins, respectively. Results: The release levels of HMGB1 in the lactate group were (2 995.00±660.91) pg/ml and (696.33±22.03) pg/ml, after lactate treatment for 6 h and 12 h, respectively, both higher than those in the control group (485.00±105.83) pg/ml (P<0.001 and P=0.028, respectively). After lactate treatment for 6 h, the relative expression of HMGB1 protein in the cytoplasm of HGC-27 cells was 1.13±0.09, higher than that of the control group (0.83±0.07, P=0.001), while the relative expression of HMGB1 in the nucleus was 0.79±0.06, lower than that of the control group (1.07±0.06, P=0.007). The phosphorylation level of HMGB1 reached 1.41±0.09, which was higher than that of the control group (0.97±0.10, P=0.031). The phosphorylation level of Akt was 11.16±0.06, higher than that of the control group (0.91±0.022, P=0.002). The phosphorylation level and nuclear translocation of HMGB1 induced by lactate decreased obviously after Akt inhibition; the proliferation and migration abilities induced by lactate were also obviously inhibited after Akt inhibition. In vivo, the HMGB1 level in the peripheral blood was (1 280.70±389.66) pg/ml in the lactate group, which was obviously higher than that in the control group (595.11±44.75) pg/ml (P=0.008), and the phosphorylation levels of HMGB1 and Akt in tumor tissues in the lactate group were obviously enhanced compared with the control group. Conclusion: Lactate induces HMGB1 release through enhancing HMGB1 phosphorylation via the Akt signaling pathway.


Subject(s)
Mice , Animals , Stomach Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , HMGB1 Protein/metabolism , Phosphorylation , Lactic Acid , Mice, Inbred BALB C , Signal Transduction
3.
Acta Pharmaceutica Sinica ; (12): 1431-1438, 2019.
Article in Chinese | WPRIM | ID: wpr-780236

ABSTRACT

This research is aimed to investigate the effect of ampelopsin on apoptosis and migration of human hepatoma SMMC-7721 cells and explore the molecular mechanism. SMMC-7721 cells were pretreated with different doses of ampelopsin and cells proliferation was detected by CCK8 kit. Cell morphology was observed under an inverted microscope. Nuclear morphology was detected by DAPI staining. Apoptotic rate was detected by Annexin V-FITC/PI flow cytometry. Migration and invasion were detected by Transwell and scratch healing test. Western blotting was used to detect cleavage of poly ADP-ribose polymerase (PARP), expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), E-cadherin, and N-cadherin, and phosphorylation of ERK, P38 and JNK in MAPKs pathway. Our results showed that ampelopsin significantly inhibited proliferation and induced apoptosis of SMMC-7721 cells, with half inhibition dose (IC50) for 24 h was 38.98 μg·mL-1. With 50 μg·mL-1 ampelopsin treatment, typical apoptotic morphological changes occurred, such as cell detachment, shrinkage and nuclear condensation. Apoptotic rate increased from 15% to 55.1%, with PARP cleavage significantly increased. In addition, treatment of ampelopsin reduced scratch healing of cells and transmembrane cells number. The expression levels of MMP-2 and MMP-9 were decreased. Further analysis of EMT-related proteins showed that after ampelopsin treatment, E-cadherin was up-regulated and N-cadherin was down-regulated. During ampelopsin treatment, ERK reached its peak of activation after 1 h, while the maximum activation time of JNK was 12 h. Meanwhile, P38 was activated within 4 h, with the highest point at 2 h. But after 4 h, ampelopsin inhibited phosphorylation of P38. These results indicated that ampelopsin induced apoptosis and reduced migration through activating MAPKs pathway and reversing EMT process in SMMC-7721 cells. This work provides a mechanistic basis for utilizing ampelopsin for anti-hepatocarcinoma treatment.

4.
Article in Chinese | WPRIM | ID: wpr-690480

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the mechanism of chrysin in regulating lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells.</p><p><b>METHODS</b>RAW264.7 cells were treated with different concentrations (0, 5, 10, 20, 40, 60, 80, 100, 150, and 200 µg/mL) of chrysin for 24 h, and the cell viability was measured using CCK-8. RAW264.7 cells were pre-treated with 10, 30, or 60 µg/mL chrysin for 2 h before stimulation with LPS for different times. The levels of TNF-α, IL-6 and MCP-1 were detected by ELISA, and Western blotting was used to detect the phosphorylation of JAK- 1, JAK-2, STAT-1 and STAT-3. The level of reactive oxygen species in RAW264.7 cells was detected by CM-H2DCFDA fluorescence probe. The effect of ROS on LPS-induced JAK-STATs signal and the inflammatory response of RAW264.7 cells was detected by ROS scavenger NAC. The transcription factors STAT-1 and STAT-3 nuclear translocation were observed by laser confocal microscopy.</p><p><b>RESULTS</b>Chrysin below 60 µg/mL did not significantly affect the viability of RAW264.7 cells. At 10, 30, and 60 µg/mL, chrysin dose-dependently inhibited the expression of iNOS induced by LPS. Chrysin treatment also inhibited LPS-induced phosphorylation of JAK-STATs, nuclear translocation of STAT1 and STAT3, release of TNF-α, IL-6 and MCP-1, and the production of ROS in RAW264.7 cells; ROS acted as an upstream signal to mediate the activation of JAK-STATs signaling pathway.</p><p><b>CONCLUSION</b>Chrysin blocks the activity of JAK-STATs mediated by ROS to inhibit LPS-induced inflammatory response in RAW264.7 cells.</p>

5.
Article in Chinese | WPRIM | ID: wpr-273791

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the molecular mechanism by which salidroside protects PC12 cells from HO-induced apoptosis.</p><p><b>METHODS</b>PC12 cells cultured in DMEM supplemented with 10% horse serum and 5% fetal bovine serum were pretreated with different doses of salidroside for 2 h and then stimulated with HOfor different lengths of time. The expression levels of PARP and caspase 3 and the phosphorylation of p38, ERK and JNK were determined with Western blotting. The cell nuclear morphology was observed after DAPI staining. The production of ROS was detected using a ROS detection kit, and the levels of gp91and p47in the membrane and cytoplasm were detected by membrane-cytoplasm separation experiment; the binding between gp91and p47was assayed by coimmunoprecipitation experiment.</p><p><b>RESULTS</b>Salidroside dose-dependently suppressed cell apoptosis, lowered phosphorylation levels of p38, ERK and JNK, inhibited the production of ROS, reduced the binding between gp91and p47, and inhibited the activity of NOX2 in PC12 cells exposed to HO.</p><p><b>CONCLUSION</b>Salidroside protects PC12 cells from HO-induced apoptosis at least partly by suppressing NOX2-ROS-MAPKs signaling pathway.</p>


Subject(s)
Animals , Rats , Apoptosis , Caspase 3 , Metabolism , Glucosides , Pharmacology , Hydrogen Peroxide , MAP Kinase Signaling System , Membrane Glycoproteins , Metabolism , NADPH Oxidase 2 , NADPH Oxidases , Metabolism , Neuroprotective Agents , Pharmacology , PC12 Cells , Phenols , Pharmacology , Phosphorylation , Reactive Oxygen Species , Metabolism
6.
Article in Chinese | WPRIM | ID: wpr-304820

ABSTRACT

To study the effect of sodium aescinate in inducing human breast cancer MCF-7 cells apoptosis and its possible mechanism. MTT assay was used to detect the inhibitory effect of sodium aescinate on the proliferation of MCF-7 cells. The morphological changes were observed under inverted microscope. DAPI nuclear staining was used to detect the changes in cell nucleus. Annexin V-FITC/PI flow cytometry was adopted to test the apoptosis rate. Changes in apoptosis-related proteins (PARP, cleaved caspase-8 and pro-caspase-3), cell survival-associated signal molecules (AKT and ERK) and their common upstream kinase SRC was detected by Western blotting. The result showed that after different concentrations of sodium aescinate were used to treat breast cancer MCF-7 cells, they inhibited the proliferation of MCF-7 cells in a dose-dependent manner, induced cell apoptosis (typical morphological changes in nucleus, significant increase in cell apoptosis rate). The expressions of cleaved PARP and caspase-8 increased, while the expression of pro-caspase-3 decreased, which further verified sodium aescinate's effect in inducing cell apoptosis. Sodium aescinate significantly inhibited the phosphorylation of cell survival-related signal molecules (AKT, ERK) and down-regulate the activation of their common up-stream kinase SRC. The findings indicated that sodium aescinate can block signals transiting to downstream molecules AKT, ERK, inhibit the proliferation of breast cancer cell MCF-7 cell apoptosis and induced cell apoptosis by suppressing the activation of SRC.


Subject(s)
Female , Humans , Antineoplastic Agents, Phytogenic , Pharmacology , Apoptosis , Breast Neoplasms , Drug Therapy , Genetics , Down-Regulation , Drugs, Chinese Herbal , Pharmacology , Extracellular Signal-Regulated MAP Kinases , Genetics , Metabolism , MCF-7 Cells , Proto-Oncogene Proteins c-akt , Genetics , Metabolism , Saponins , Pharmacology , Signal Transduction , Triterpenes , Pharmacology , src-Family Kinases , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL