Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Pharmacological Bulletin ; (12): 146-154, 2024.
Article in Chinese | WPRIM | ID: wpr-1013609

ABSTRACT

Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway.

2.
Article in Chinese | WPRIM | ID: wpr-330148

ABSTRACT

<p><b>AIM</b>To study the effects of L-tyrosine on 3beta-HSD activity of rat luteal cells in vitro.</p><p><b>METHODS</b>Luteal cells were isolated from ovary tissues of female rats pretreated with PMSG and hCG. Luteal cells were cultured with 95% oxygen and 5% carbon dioxide in 37 degrees C. 3beta-HSD activity was measured by radioimmunoassay (RIA).</p><p><b>RESULTS</b>(1) 0.2 mmol x L(-1) and 2.0 mmol x L(-1) L-tyrosine significantly inhibited 3beta-HSD activity. (2) 0.2 mmol x L(-1) L-tyrosine exerted different effects on 3beta-HSD activity at different concentrations of pregnenolone (Ph). It increased 3beta-HSD activity at 0.1 micromol x L(-1) and 1 micromol x L(-1) of Pn concentration. With further increase in the concentration of Pn to 100 micromol x L(-1), the stimulating effect of L-tyrosine was switched to suppression effect. (3) L-tyrosine and L-tyrosine hydrazide both inhibited 3beta-HSD activity induced by hCG.</p><p><b>CONCLUSION</b>L-tyrosine affects 3beta-HSD activity of rat luteal cells in vitro. L-tyrosine and tyrosine hydrazide inhibits hCG induced 3beta-HSD activity.</p>


Subject(s)
Animals , Female , Rats , 3-Hydroxysteroid Dehydrogenases , Metabolism , Cells, Cultured , Luteal Cells , Rats, Wistar , Tyrosine , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL