Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add filters








Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 89-99, 2024.
Article in Chinese | WPRIM | ID: wpr-1005257

ABSTRACT

This article systematically analyzes the historical evolution of the origin, scientific name, medicinal parts, quality evaluation, harvesting and processing and other aspects of Tsaoko Fructus by consulting ancient materia medica, medical books, prescription books in the past dynasties and combining with the modern literature, so as to provide a basis for the development and utilization of famous classical formulas containing Tsaoko Fructus. According to the research, the name of Caoguo(草果) was first used in the Taiping Huimin Heji Jufang(《太平惠民和剂局方》) in the Northern Song dynasty, Tsaoko Fructus is the correct name of the herbal medicine in all dynasties, and there are also aliases such as Caokou, Doukou, Loukou, Laokou and Caodoukou. The mainstream source of Tsaoko Fructus used in the past dynasties is the dried mature fruit of Amomum tsaoko of Zingiberaceae, but Tsaoko Fructus was often used as a nickname for Amomi Fructus Rotundus or Alpiniae Katsumadai Semen during the Song dynasty. Bencao Pinhui Jingyao(《本草品汇精要》) in the Ming dynasty was the earliest materia medica that recorded Tsaoko Fructus as a separate medicinal herb in sections. Under the influence of early ancient books, there were some books that confused Tsaoko Fructus with other Zingiberaceae plants during the Qing dynasty, it was not until modern times that Tsaoko Fructus was distinguished from other plants. The origin of Tsaoko Fructus is Yunnan and Guangxi, and then gradually expanded to Guizhou and other places. Now Yunnan is the province with the largest planting area of Tsaoko Fructus, and has become the main producing area. Since modern times, it has been recorded in the literature that the quality of Tsaoko Fructus is mainly characterized by large, full, red-brown and strong in smell. According to ancient records, the harvest time of Tsaoko Fructus was in the eighth month of the lunar calendar, and they were mostly used for peeling or simmering. Currently, the harvest period of Tsaoko Fructus is October to November, and then sun-dried or dried after harvesting. The records of the properties and functional indications of Tsaoko Fructus are basically consistent with the ancient and modern documents, which is warm in nature, pungent in flavor, belonging to the spleen and stomach meridians, moderate in dryness and dampness, intercepting malaria and eliminating phlegm, used for internal resistance of cold and dampness, abdominal distension and pain, fullness and vomiting, malaria cold and fever, and plague fever. Based on the research results, it is suggested that A. tsaoko should be used as the medicinal base for the development of famous classical formulas containing Tsaoko Fructus, processing method can be according to the requirements of the prescription, and if the requirements of concoction are not indicated, it can be used in the form of raw products.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 77-88, 2024.
Article in Chinese | WPRIM | ID: wpr-1005256

ABSTRACT

In order to provide basic information for the utilization and development of famous classical formulas containing Bletillae Rhizoma, this article systematically analyzes the historical evolution of the name, origin, harvesting and processing of Bletillae Rhizoma by reviewing the ancient materia medica, prescription books, medical books and modern literature. The research results showed that Baiji(白及) was the main name, some scholars took Baiji(白芨) as its main name, and there were many other names such as Baiji(白给), Baigen(白根), Baiji(白苙). The mainstream source of Bletillae Rhizoma was the tubers of Bletilla striata, and drying, large, white, solid, root-free and skin removed completely were the good quality standards. With the promotion of wild to cultivated medicinal materials, there were certain differences between their traits, and the quality evaluation indexes should be adjusted accordingly. The origin of records in the past dynasties was widely distributed, with Guizhou and Sichuan having high production and good quality in modern times. The harvesting period is mostly in spring and autumn, and harvested in autumn was better. The processing and processing technology is relatively simple, and it was used fresh or powdered in past dynasties, while it is mainly sliced for raw use in modern times. Based on the results, it is suggested that the tubers of Bletilla striata of Orchidaceae should be used in the famous classical formulas, and it should be uniformly written as Baiji(白及). And if the original formula indicates the requirement of processing, it should be operated according to the requirement, if the requirement of processing is not indicated, it can be used in raw form as medicine.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 67-76, 2024.
Article in Chinese | WPRIM | ID: wpr-1005255

ABSTRACT

By consulting ancient and modern literature, the herbal textual research of Farfarae Flos has been conducted to verify the name, origin, producing area, quality evaluation, harvesting and processing methods, so as to provide reference for the development and utilization of the famous classical formulas containing Farfarae Flos. According to the research, the results showed that Farfarae Flos was first described as a medicinal material by the name of Kuandonghua in Shennong Bencaojing(《神农本草经》), and the name was used and justified by later generations. The main origin was the folwer buds of Tussilago farfara, in addition, the flower buds of Petasites japonicus were used as medicine in ancient times. The ancient harvesting time of Farfarae Flos was mostly in the twelfth month of the lunar calendar, and the modern harvesting time is in December or before the ground freeze when the flower buds have not been excavated. Hebei, Gansu, Shaanxi are the authentic producing areas with the good quality products. Since modern times, its quality is summarized as big, fat, purple-red color, no pedicel is better. Processing method from soaking with licorice water in the Northern and Southern dynasties to stir-frying with honey water followed by micro-fire in the Ming dynasty, and gradually evolved to the modern mainstream processing method of honey processing. Based on the research results, it is suggested that the dried flower buds of T. farfara, a Compositae plant, should be selected for the development of famous classical formulas containing Farfarae Flos, and the corresponding processed products should be selected according to the specific processing requirements of the formulas, and raw products are recommended for medicinal use without indicating processing requirements.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 55-66, 2024.
Article in Chinese | WPRIM | ID: wpr-1005254

ABSTRACT

By consulting the ancient and moderm literature, this paper makes a textual research on the name, origin, quality evaluation, harvesting and processing of Olibanum, so as to provide a basis for the development of the famous classical formulas containing this medicinal material. According to the herbal textual research, the results showed that Olibanum was first described as a medicinal material by the name of Xunluxiang in Mingyi Bielu(《名医别录》), until Ruxiang had been used as the correct name since Bencao Shiyi(《本草拾遗》) in Tang dynasty. The main origin was Boswellia carterii from Burseraceae family. The mainly producing areas in ancient description were ancient India and Arabia, while the modern producing areas are Somalia, Ethiopia and the southern Arabian Peninsula. The medicinal part of Olibanum in ancient and modern times is the resin exuded from the bark, which has been mainly harvested in spring and summer. It is concluded that the better Olibanum has light yellow, granular, translucent, no impurities such as sand and bark, sticky powder and aromatic smell. There were many processing methods in ancient times, including cleansing(water flying, removing impurities), grinding(wine grinding, rush grinding), frying(stir-frying, rush frying, wine frying), degreasing, vinegar processing, decoction. In modern times, the main processing methods are simplified to cleansing, stir-frying and vinegar processing. Nowadays, the commonly used specifications include raw, fried and vinegar-processed products. Among the three specifications, raw products is the Olibanum after cleansing, fried products is a kind of Olibanum processed by frying method, vinegar-processed products is the processed products of pure frankincense mixed with vinegar. Based on the research results, it is recommended to select the resin exuded from the bark of B. carterii for the famous classical formulas such as Juanbitang containing Olibanum, processing method should be carried out in accordance with the processing requirements of the formulas, otherwise used the raw products if the formulas without clear processing requirements.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 43-52, 2024.
Article in Chinese | WPRIM | ID: wpr-999159

ABSTRACT

ObjectiveBased on the experience of traditional quality evaluation, the quality of Atractylodis Macrocephalae Rhizoma(AMR) with different production methods such as direct seeding, transplanting after seedling raising, topping and non-topping, and difference in growth years was compared. MethodVernier caliper was used to measure the trait data of AMR in different production methods. Paraffin sections of AMR with different production methods were made by saffron solid green staining, and the microstructure was observed. The contents of water-soluble and alcohol-soluble extracts in AMR with different production methods were determined according to the 2020 edition of Chinese Pharmacopoeia. The content of water-soluble total polysaccharides in AMR with different production methods was detected by sulfuric acid-anthrone method. Fiber analyzer was used to detect the content of fiber components in AMR with different production methods. The contents of monosaccharides, oligosaccharides and some secondary metabolites in AMR with different production methods were detected by ultra performance liquid chromatography(UPLC), and the differences of chemical components were compared by multivariate statistical analysis methods such as principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA). ResultIn terms of traits, the 3-year-old AMR with direct seeding and without topping was close to the high-quality AMR with "phoenix-head and crane-neck, strong sweetness and clear aroma" recorded in ancient materia medica, followed by the 3-year-old AMR with topping after transplanting, while the 2-year-old AMR with topping after transplanting with high market circulation rate was generally fat and strong with mild odor. In the microscopic aspect, the arrangement of xylem vessels and fiber bundles in the 3-year-old samples formed two obvious rings. Compared with the 2-year-old samples cultivated in Bozhou and Zhejiang, the 3-year-old samples without topping after transplanting had more wood fibers. In terms of chemical composition, the contents of 70% ethanol extract, fructose, glucose, sucrose, 1-kestose, atractylenolide Ⅰ, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid and other components in 3-year-old AMR with direct seeding and without topping were significantly higher than those in the other three samples(P<0.05). The contents of cellulose, 70% ethanol extract, sucrose, atractylenolide Ⅰ, atractylone and other components in 3-year-old AMR with topping after transplanting were significantly higher than those in the 2-year-old AMR with high market circulation rate(P<0.05), while the contents of water-soluble extract and water-soluble total polysaccharides in 2-year-old samples with topping after transplanting were significantly higher than those in the 3-year-old AMR with topping after transplanting, direct seeding and without topping(P<0.05). ConclusionUnder the current mainstream production mode, too much manual intervention makes AMR heavily enriched in polysaccharides and increased the yield, but the accumulation of sweet substances, fragrant substances and fiber substances is insufficient, which affects its quality. The current quality standard of AMR has some shortcomings in guiding the high quality production of it, it is suggested to revise the quality standard of AMR, supplement the quantitative analysis of secondary metabolites, and strengthen the production of imitation wild AMR.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 31-42, 2024.
Article in Chinese | WPRIM | ID: wpr-999158

ABSTRACT

ObjectiveBased on the quality evaluation experience of "it is better to have a fragrant and strong aroma" summarized by materia medica of past dynasties, the chemical components of Sojae Semen Nigrum(SSN) and Sojae Semen Praeparatum(SSP) were systematically compared and analyzed, and the main fermentation products in different fermentation time were quantitatively analyzed, so as to clarify the transformation law of internal components in the processing process and provide scientific basis for the modern quality control of SSP. MethodUltra performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used for the structural identification of the chemical constituents of SSN and SSP, and with the aid of Progenesis QI v2.3 software, the negative ion mode was employed for principal component analysis(PCA) pattern recognition, and the data were analyzed with the aid of orthogonal partial least squares-discriminant analysis(OPLS-DA) for two-dimensional data to obtain S-plot, and components with |P|>0.1 were selected as the differential constituents. The contents of isoflavonoids in SSP during fermentation was determined by UPLC, and the samples were taken every 8 h in the pre-fermentation period and every 2 d in the post-fermentation period, and the dynamic changes of isoflavonoid contents in different fermentation stages were analyzed. The contents of amino acids and nucleosides in SSP and SSN from different fermentation stages were quantitatively analyzed by phenyl isothiocyanate(PITC) pre-column derivatization and high performance liquid chromatography(HPLC) gradient elution, and the contribution of flavor substances to the "delicious" taste of SSP was discussed by taste intensity value(TAV). ResultA total of 19 kinds of differential components were screened out, mainly soybean saponins and isoflavones, and their contents decreased significantly or even disappeared after fermentation. In the pre-fermentation process of SSP, glycoside bond hydrolysis mainly occurred, and isoflavone glycosides in SSN were degraded and converted into the corresponding aglycones, the content of flavor substances such as amino acids increased gradually. In the post-fermentation process, protein degradation mainly occurred, after 8 d of post-fermentation, the content of isoflavones was basically stable, while the total content of amino acids increased by 8-40 times on average. Different amino acids form the special flavor of SSP, such as the TAV of glutamate is always ahead of other flavor substances, and sweet substances such as alanine and valine have made relatively great contributions to SSP. ConclusionBased on the law of constituent transformation, combined with the traditional evaluation index of "fragrant and strong", it is difficult to control the fermentation degree of SSP by the existing standards in the 2020 edition of Chinese Pharmacopoeia. It is suggested that description of the characteristics of SSP be refined and changed to "fragrant, delicious and slightly sweet", and at the same time, the post-fermentation index compounds such as glutamic acid, alanine and valine should be added as the quality control indicators of SSP, so as to standardize the production process and improve the quality of SSP.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-30, 2024.
Article in Chinese | WPRIM | ID: wpr-999157

ABSTRACT

ObjectiveBased on the traditional quality evaluation methods summarized in previous dynasties, this paper systematically contrasted cultivated Astragali Radix(CA) and wild-simulated Astragali Radix(WA) from the aspects of character, microstructure and chemical composition by modern technological means. MethodThe collected CA and WA were compared in characters and microscopic characteristics in cross section, and comparative analysis were performed on the contents of cellulose, extracts, carbohydrate, total flavonoids, total saponins, etc. Then ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometer(UPLC-Q-TOF-MS) and desorption electrospray ionization mass spectrometry imaging(DESI-MSI) were used to comparatively analyze the secondary metabolites and their spatial distributions in the xylem and phloem of CA and WA. ResultIn terms of characters, the characters and sectional features of WA was consistent with the characteristics of high-quality Astragali Radix, while the CA was quite different from the traditional high-quality Astragali Radix. In terms of microscopy, the phellem layer of CA was thin, and the section fissures were mostly distributed through the cambium in a long strip shape without obvious growth ring characteristics. The cork layer of WA was thick, and the cracks in the section were distributed in the center of the xylem and the outer edge of the phloem in an irregular cavity shape. The cambium was tight without cracks, and had obvious characteristics of a growth ring. In terms of chemical composition, the contents of water-soluble extract, 80% ethanol extract and sucrose of CA was significantly higher than those of WA, while the contents of total saponins, lignin and hemicellulose were significantly lower than those of WA. And the contents of 100% ethanol extract, total polysaccharides and total flavonoids in both of them were generally similar, but slightly higher in WA. The contents of 2 kinds of monoacyl-substituted flavonoid glycosides in the xylem of WA was significantly higher than those of CA, while the contents of 2 kinds of flavonoid aglycones and one flavonoid glycoside were on the contrary. The contents of 7 saponins in phloem of WA were significantly higher than those of CA. ConclusionThere are significant differences between CA and WA in characters, microstructure and chemical components, in which CA has a fast growth rate and a short planting period, and the primary metabolites such as water-soluble extracts and sucrose are more enriched, which is the reason for its firm texture and sweetness being significantly higher than those of WA. However, the contents of lignin, hemicellulose and some secondary metabolites in WA are significantly higher than those in the CA, which are close to the traditional description of characters and quality. Based on the results of this study, it is suggested to strengthen the production of WA, improve the supply capacity of WA, and gradually upgrade the current standard. It is recommended to increase the contents of monoacyl-substituted flavonoid glycosides, total saponins and other indicators that can characterize different production methods, so as to guide the high-quality production of Astragali Radix.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-20, 2024.
Article in Chinese | WPRIM | ID: wpr-999156

ABSTRACT

By reviewing the research history on quality comparison between wild and cultivated Chinese crude drugs, this paper systematically combed the relevant research reports since the 1950s, and summarized and analyzed the results of existing comparative studies, and found that the existing comparative research on the quality of wild and cultivated Chinese crude drugs were mainly focused on several aspects, including characteristics, microstructures, chemical compositions, pharmacodynamic effects, and genetic diversity. Among these, comparative studies of chemical compositions have been the dominant approach, with a particular emphasis on comparing the contents of index components. However, research on pharmacodynamic effects remained relatively limited. Due to various factors such as sample quantity, sample origin, growth period and cultivation methods, the differences in quality between wild and cultivated Chinese crude drugs vary significantly. In general, most wild Chinese crude drugs exhibited higher quality than cultivated products, with significant differences in their characteristics. The contents and proportions of some chemical components underwent noticeable changes, particularly with a marked increase in the proportion of primary metabolites after cultivation. The quality of cultivated Chinese crude drugs is closely related to the cultivation practices employed. Chinese crude drugs produced through wild nurturing, simulated wild planting, ecological cultivation, and other similar methods demonstrate quality levels comparable to those of wild Chinese crude drugs. Based on the analysis results, it is recommended to explicitly specify the cultivation practices and cultivation period of cultivated Chinese crude drugs in comparative studies of the quality between wild and cultivated Chinese crude drugs. Multiple technical approaches, including characteristics, microscopy, non-targeted metabolomics combined with quantitative analysis of differential components, and bioefficacy evaluation, should be employed to comprehensively assess the quality disparities between wild and cultivated Chinese crude drugs. Moreover, research efforts should be intensified to investigate the changes in pharmacodynamic effects resulting from differences in plant cell wall composition, primary metabolites, and secondary metabolites, in order to guide the production of high-quality Chinese crude drugs.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 97-107, 2023.
Article in Chinese | WPRIM | ID: wpr-984587

ABSTRACT

Through reviewing ancient and modern literature, the textual research of Anemarrhenae Rhizoma(AR) has been conducted to verify the name, origin, changes in production areas, quality evaluation, harvesting and processing methods, so as to provide reference for the development and utilization of the famous classical formulas containing AR. Through the herbal textual research, AR was first published in Shennong Bencaojing, and has been used as the proper name for this herb for generations, and the mainstream source of AR used for generations is the rhizome of Anemarrhena asphodeloides. The high-quality production areas that have been revered throughout the ages are Hebei, Shanxi, Shaanxi, Inner Mongolia and Fangshan district of Beijing, etc. In recent times, AR produced in Yixian county of Hebei province(Xiling Zhimu), is better known and is regarded as a very good source. At present, cultivated AR is mainly produced in Yixian county and Anguo of Hebei province, Bozhou of Anhui province and other places. The medicinal parts of AR in ancient and modern times are all rhizomes, and the quality is better if it has thick flesh, hard wood, yellow outer color and white section color. The harvesting time recorded in ancient medical books is usually in lunar February and August, with exposure to dryness, while modern harvesting is spring and autumn. The processing methods of the past dynasties were mainly to remove the hair when using, avoid iron when cutting, process with wine or salt water, while the two main specifications in modern times are raw and salted products. Based on the systematic research, it is recommended that the dried rhizome of A. asphodeloides in the famous classical formulas be used for AR. If the original formula specifies processing requirements, it should be operated according to the requirements, if the processing requirements are not indicated, the raw products can be used as medicine.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 88-96, 2023.
Article in Chinese | WPRIM | ID: wpr-984586

ABSTRACT

In order to provide the basis for the development of famous classical formulas, the name, origin, quality evaluation, harvesting and processing of Eucommiae Cortex were systematically researched by consulting the ancient herbal and medical books, combining with the modern literature. According to the textual research, materia medica in the past dynasties used Eucommiae Cortex as the correct name. Combined with characteristics, origin and efficacy, Eucommiae Cortex in ancient times to the present is the dry bark of Eucommia ulmoides from family Eucommiaceae. The earliest producing areas of Eucommiae Cortex are Henan, Shanxi, Shaanxi and Sichuan. Since the Ming dynasty, the producing areas have expanded to most of the regions in the country, and Sichuan, Shaanxi, Chongqing, Guizhou and Hubei are regarded as the authentic producing areas. It has been concluded that the quality of Eucommiae Cortex is best if the bark has thick body, large block, scraped rough skin, multi silk section and dark purple internal surface. In ancient times, the processing methods of Eucommiae Cortex were mainly included removing rough bark and cutting for raw use, processing with auxiliary materials such as honey, ginger juice, salt water, wine, and so on. While in modern times, the processing methods have become increasingly simplified which are mainly cutting raw materials after cleansing and salt processing. It is need to excavate the connotation of different processed products and restore the traditional main processing methods through standards. Based on the requirement of Eucommiae Cortex in Sanbitang, it is suggested to use ginger-processed products according to the research results, which is used ginger juice as auxiliary material and processed with stir frying method according to the 2020 edition of Chinese Pharmacopoeia.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 72-87, 2023.
Article in Chinese | WPRIM | ID: wpr-984585

ABSTRACT

This article systematically sorted out and researched the name, origin, harvesting and other aspects of Rhapontici Radix by referring to ancient materia medica, medical books and prescription books, combined with modern literature, in order to provide a reference basis for the development of the famous classical formulas containing this herb. According to the results of the herbal textual research, it can be seen that all the generations of the materia medica have taken Loulu as the proper name, and there are also aliases such as Luligen, Laowenghua and Jiahao. The mainstream base of Rhapontici Radix recorded in the past dynasties was the present Compositae plant Rhaponticum uniflorum, which is mostly used as medicine with roots. Since the Tang dynasty, the stems and leaves of Siphonostegia chinensis have been used as Rhapontici Radix in the northern region. Until modern times, Qizhou Pharmacognosy began to differentiate it into two categories, Qizhou Loulu and Yuzhou Loulu, according to the commodity circulation at that time, producing area and origin, of which Yuzhou Loulu is the roots of Echinops latifolius, a plant of Compositae family. In ancient times, the quality of Loulu was based on "the one that comes out of Shanzhou is the best". However, in modern times, the quality of Qizhou Loulu is better if the surface is black, neat, sturdy, firm, not broken, and without a withered heart, while the quality of Yuzhou Loulu is better if the branches are thick and long with an earthy-brown surface, solid texture and neat in length. In ancient times, most of the harvesting and processing of Loulu was "harvesting the roots in lunar August and drying them in the shade", while in modern times, the roots are mostly excavated in the spring and autumn, and dried in the sun. Its ancient method of processing is to mix and steam with licorice, nowadays, it is prepared by removing impurities, washing, moistening thoroughly, cutting into thick slices and drying in the sun, and then taking the raw products as medicine. Based on the research conclusion, it is suggested that when developing and utilizing the famous classical formulas containing Loulu, the background of the formula should be verified, and if the original formula indicated the requirement of processing, it should be processed according to the requirement, but if not, it is recommended to use raw products as medicine.

12.
Journal of Pharmaceutical Analysis ; (6): 296-304, 2023.
Article in Chinese | WPRIM | ID: wpr-991144

ABSTRACT

The rapid and accurate authentication of traditional Chinese medicines(TCMs)has always been a key scientific and technical problem in the field of pharmaceutical analysis.Herein,a novel heating online extraction electrospray ionization mass spectrometry(H-oEESI-MS)was developed for the rapid and direct analysis of extremely complex substances without the requirement for any sample pretreatment or pre-separation steps.The overall molecular profile and fragment structure features of various herbal medicines could be completely captured within 10-15 s,with minimal sample(<0.5 mg)and solvent consumption(<20 μL for one sample).Furthermore,a rapid differentiation and authentication strategy for TCMs based on H-oEESI-MS was proposed,including metabolic profile characterization,characteristic marker screening and identification,and multivariate statistical analysis model validation.In an analysis of 52 batches of seven types of Aconitum medicinal materials,20 and 21 key compounds were screened out as the characteristic markers of raw and processed Aconitum herbal medicines,respectively,and the possible structures of all the characteristic markers were comprehensively identified based on Com-pound Discoverer databases.Finally,multivariate statistical analysis showed that all the different types of herbal medicines were well differentiated and identified(R2X>0.87,R2Y>0.91,and Q2>0.72),which further verified the feasibility and reliability of this comprehensive strategy for the rapid authentication of different TCMs based on H-oEESI-MS.In summary,this rapid authentication strategy realized the ultra-high-throughput,low-cost,and standardized detection of various complex TCMs for the first time,thereby demonstrating wide applicability and value for the development of quality standards for TCMs.

13.
China Pharmacy ; (12): 2678-2683, 2023.
Article in Chinese | WPRIM | ID: wpr-997806

ABSTRACT

Flos Trollii is a traditional Chinese medicinal herb in China. The 2020 edition of the Chinese Pharmacopoeia (part 1) did not include the medicinal herb, its source is not clear, and there is a lack of relevantly systematic and comprehensive research. By consulting ancient Chinese herbal medicines, medical books and related literature, the textual research of Flos Trollii was conducted to verify the name, origin and producing area, so as to provide a reference for the clinical application and resource development of Flos Trollii. Through textual research, it could be seen that the name “Jinlianhua” was used as the correct name in the mainstream origin of the past dynasties, and there were still multiple synonyms such as Hanjinlian, Jinmeicao and so on, most of which originated from its growth environment and appearance. According to the distribution of varieties, it could be inferred that the mainstream origin of Flos Trollii in the Qing Dynasty and before was Trollius chinensis Bge. According to historical records, Flos Trollii were mostly produced in northern regions such as Hebei, Inner Mongolia, Shanxi, etc., which was related to the fact that Flos Trollii liked cloudy, humid and cold environments. Based on the textual research results, the author suggested that the mainstream origin of the past dynasties T. chinensis Bge. should be selected for subsequent collection of Flos Trollii.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 116-124, 2023.
Article in Chinese | WPRIM | ID: wpr-964952

ABSTRACT

In this paper, the name, origin, quality evaluation, producing area and processing methods of Lablab Semen Album in the famous classical formulas were researched by reviewing the ancient materia medica, medical books, prescription books and modern literature. The results showed that the name of Lablab Semen Album in the past dynasties was mostly derived from its shape and color, called Biandou and Baibiandou. The mainstream origin used in the past dynasties was Lablab purpureus, the medicinal parts were mainly white mature seeds, with the addition of the leaves in the Song dynasty and the flowers in the Ming dynasty. Since modern times, the authentic producing areas of Lablab Semen Album are Suzhou, Zhejiang and other places, and now mainly produced in Chuxiong and Xinping, Yunnan and Panzhihua, Sichuan. The traditional quality evaluation of Lablab Semen Album is evaluated as large, solid, full and white. The harvesting time of this herb is recorded from the eighth to the ninth lunar month in related literature, the pods are picked when the seeds are ripe, and the seeds are dried in the sun. In ancient times, the processing of Lablab Semen Album mainly consisted of frying the seeds with skin and then pulverizing for use, or soaking and peeling seeds for raw use. Based on the conclusion of the textual research, it is recommended that the seeds or flowers of the white flowering plants of L. purpureus, a member of the leguminosae, should be used in the famous classical formulas, and the dried seeds or dried flowers of Lablab Semen Album can be used as medicine if the formula did not clearly indicate processing requirements.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 103-115, 2023.
Article in Chinese | WPRIM | ID: wpr-964951

ABSTRACT

By reviewing ancient materia medica, medical and prescription books, combined with modern literature, the textual research of Stephaniae Tetrandrae Radix has been conducted to verify the name, origin, producing area, harvesting and processing methods. Through textual research, the results show that the mainstream name of this herb recorded in the past dynasties is Fangji, which is also called Hanzhong Fangji because it is produced in Hanzhong city, and after the Tang dynasty, it was gradually divided into Hanfangji and Mufangji, and there is the saying that Han Zhushuiqi, Mu Zhufengqi. The names of Fenfangji and Guangfangji were first seen in the republic of China. In addition, Fenfangji was once distributed in Hankou, so it was also known as "Hanfangji", which is easily confused with the traditional Hanzhong Fangji for short. Based on the original research, it is concluded that Aristolochia heterophylla(Hanzhong Fangji)is the mainstream of Stephaniae Tetrandrae Radix used in the Qing dynasty and before, and the application history of Cocculus orbiculatus can be traced back to before the Tang dynasty. After the Ming dynasty, Stephania tetrandra gradually became another main origin, and in the Republic of China, A. fangchi was used as a medicine for Stephaniae Tetrandrae Radix, but in modern times it was banned because it contained aristolochic acid as a toxic ingredient, and S. tetrandra has become the mainstream legal origin. The traditional production area of Hanzhong Fangji is Hanzhong, Shaanxi province, while today the mainstream of S. tetrandra is manly produced in Jiangxi and other places. Based on the quality evaluation research, the quality of Hanzhong Fangji is better with the radial texture of section used as radial solution, yellow solid and fragrant. Fenfangji with solid quality, white inside, powdered enough, less fiber and radiating texture is better. From the harvesting and processing research, the root of Fangji is mostly harvested in spring and autumn, and the outer bark should be removed in some literature. Before the Ming dynasty, this herb was dried in the shade, and after the Ming dynasty, it was dried in the sun. The modern production processing of Fangji is to harvest it in autumn, wash it, remove the rough bark, dry it to half dry, cut it into sections, and then cut it longitudinally if it is large, and dry it. Based on the results, combined with current studies on the toxicity of aristolochic acid and influencing factors such as commercial circulation, it is suggested that S. tetrandra should be used as the origin of Fangji, the processed products are selected according to the prescription requirements, and those without specified requirements can be processed by referring to the raw products in the 2020 edition of Chinese Pharmacopoeia.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 93-102, 2023.
Article in Chinese | WPRIM | ID: wpr-964950

ABSTRACT

Through consulting the ancient materia medica and medical books, combined with modern literature, this paper made a textual research on the name, origin, producing area, harvesting time and processing method of Piperis Kadsurae Caulis, in order to provide basis for the development of the famous classical formulas containing this herb. According to textual research, it is shown that the earliest name for Piperis Kadsurae Caulis as medicine was Nanteng in Bencao Shiyi, and there were other names such as Dinggongteng and Shinanteng in the ancient materia medica. The name of Haifengteng should appear in the Ming dynasty. Before the Song dynasty, the origin of Piperis Kadsurae Caulis was probably derived from caulis of Piper wallichii. After the Song dynasty, the main origins should be some species in Piper, such as P. kadsura and P. hancei, and its origin in the successive editions of Chinese Pharmacopoeia was only P. kadsura. Combining the original plant research, market survey and distribution of wild resources, it is suggested that the Haifengteng used in the famous classical formulas apart form the P. kadsura, the P. hancei should be add as original plant. Due to climate change and the heat-loving habit of Piper, the producing area of Haifengteng gradually moved from the Qinling Mountains to the southern areas rich in Piper, and Quanzhou area of Fujian province has been recommended since the Ming dynasty. The harvesting period of Piperis Kadsurae Caulis is from July to August in the lunar calendar, the above-ground parts are dried by removing fibrous roots, thin stems and leaves. In the past dynasties, there are few records on the processing of this herb, so it is suggested that Piperis Kadsurae Caulis in famous classical formulas without special processing requirements should be used as raw products.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 80-92, 2023.
Article in Chinese | WPRIM | ID: wpr-964949

ABSTRACT

By reviewing ancient materia medica and combining with modern literature, the textual research of Magnoliae Flos has been conducted to verify the name, origin, producing area, harvesting and processing methods, in order to provide basis for the selection and use of this herb in the development of famous classical formulas. After the textual research, it could be seen that the correct name of Magnoliae Flos was Xinyi in the past dynasties, meaning spicy flower buds. The main original plants used in past dynasties are Magnolia denudata and M. biondii. The history of the research on its scientific name in recent times is complicated, many foreign scholars have given several different scientific names, but most of them are inconsistent with the actual situation of Magnoliae Flos used in ancient China, because foreign scholars failed to collect the original plants of Magnoliae Flos for accurate identification. Before the Ming dynasty, Magnoliae Flos was mainly produced in Shaanxi, and then the recorded production areas gradually increased. After the founding of the People's Republic of China, the products produced in Henan named M. biondii were highly respected, and Henan was regarded as authentic producing area, and because of the collection and distribution through Yuzhou, it was customarily called Huichunhua. In ancient times, the harvesting period of Magnoliae Flos mostly concentrated in the first and second months of the lunar calendar, and the flower buds of M. biondii were also recommended to be used as medicine, but nowadays the flower buds are mostly collected in winter and spring, and those with dry buds, large size, yellow-green color, tight inner petals, fragrant smell, and no impurities are preferred. In the past dynasties, raw products were the mainstream, and there were also frying, soaking and so on. Based on the results, it is suggested that the flower buds of M. biondii should be used in the development of famous classical formulas. If the original formula does not specify the processing requirements, the raw products can be used as medicine.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 75-87, 2023.
Article in Chinese | WPRIM | ID: wpr-979452

ABSTRACT

By reviewing the ancient and modern literature, the name, origin, medicinal parts and other aspects of Linderae Radix in famous classical formulas were systematically sorted out, so as to provide a basis for development of famous classical formulas containing this herb. Linderae Radix was first recorded in Bencao Shiyi in the Tang dynasty under name of Pangqi, and since Rihuazi Bencao of the Five dynasties, all generations of materia medica have used Wuyao as its proper name of the herb. The mainstream source of Linderae Radix used in the past dynasties is dried tuberous roots of Lindera aggregata contained in the 2020 edition of Chinese Pharmacopoeia. The origins of Linderae Radix recorded in the past dynasties are mainly Guangdong, Guangxi, Hunan, Zhejiang, Anhui and others, since the Song dynasty, Tiantai county in Zhejiang province has been regarded as the authentic producing place, in modern times, it is still the authentic place of origin. At harvesting, in ancient times, the harvesting time of the roots was mostly in August, while in modern times, Linderae Radix is mostly harvested in winter and spring or throughout the year, and is dried directly after harvesting or cut thin slices and dried in the place of production. At processing, Linderae Radix was processed by removing the peel and heart, wine roasting, vinegar roasting and other methods in ancient times, and in modern times, it is mostly used in raw form as medicine. In conclusion, it is suggested that the processing method of fresh slicing and drying in the place of origin in the 2020 edition of Chinese Pharmacopoeia should be adopted if Linderae Radix is involved in the development of famous classical formulas.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 62-74, 2023.
Article in Chinese | WPRIM | ID: wpr-979451

ABSTRACT

Through reviewing the ancient and modern literature, the name, origin, producing area, quality evaluation, harvesting and processing methods of Trichosanthis Fructus(TF) and Trichosanthis Radix(TR) in famous classical formulas were systematically sorted out following the chronological order. The results showed that there were many nicknames of TF and TR, and Gualou and Tianhuafen have become the mainstream names for its fruit and root, respectively. Both of them took Trichosanthes kirilowii as the mainstream base. TF and TR have been used as medicines in the Han dynasty, and since the North and South dynasties, Leigong Paozhilun had been clear that the effects of peels, seeds, stems, roots were different. TF was used as medicine with intact fruits, harvested after maturity from September to October, hung and dried in the shade, and its quality has been summarized in recent times as being best for those who are mature, large, thick and pliable peels, orange-yellow in color, and with sufficient sugary properties. In ancient times, the processing of TR was mostly crushed or shredded with the peels and seeds, or processing for pancakes and creams. TR was used as medicine with the roots, it is harvested from November to December, peeled and dried in the sun, and its quality was best when it was deep in the soil, large, white, powdery, firm and delicate with few muscles and veins, and it was considered to be toxic when it was born in briney land. Processing method of TR was to do powder into the medicine in the Tang dynasty, and gradually evolved into direct slicing use in the Ming and Qing dynasties. Since the modern era, the authentic producing areas of TF and TR were in the vicinity of Lingbao, Henan province, known as Anyang Huafen, and in modern times, there are well-known production areas such as Anguo, which produces Qihuafen, and Jinan, which produces Changqing Gualou. In the Song dynasty, there was a habit of substituting Trichosanthis Semen for the whole herb, which was later corrected by the materia medica in Ming dynasty. Based on the results, It is suggested that T. kirilowii be selected as the basal plant for the development of famous classical formulas involving TR and TF. In Qingjin Huatantang, Trichosanthis Semen is processed by stir-frying method, while TR and TF in other five formulas from the Catalogue of Ancient Famous Classical Formulas(The First Batch) were all used in raw form.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 42-61, 2023.
Article in Chinese | WPRIM | ID: wpr-979450

ABSTRACT

To conduct textual research on the records of Chrysanthemi Flos in the ancient literature from the aspects of name, origin, species, scientific name, origin, harvesting, processing, quality and so on, and the modern literature was sorted out to clarify the relationship between the ancient and modern times, so as to provide a reference for the development of famous classical formulas containing Chrysanthemi Flos. Chrysanthemi Flos is an ornamental, edible and medicinal plant in China, it has many aliases, but it has been recorded in this materia medica under the name of Juhua, Ganju and Ganjuhua. Before the Tang dynasty, medicinal Chrysanthemi Flos mainly collected wild products, including yellow flowers and white flowers, of which the mainstream of yellow flowers was originally Dendranthema lavandulifolium and D. potentilloides, the mainstream of white flowers is D. vestitum and D. chanetii. The cultivation of medicinal Chrysanthemi Flos began in the Northern Song dynasty, and wild D. lavandulifolium, D. potentilloides, D. vestitum and D. chanetii were selected through long-term interspecies and intraspecies crossbreeding, which gradually formed the current cultivar D. morifolium. After chrysanthemums were introduced abroad, foreign scholars began to name chrysanthemums with Linnaeus's plant classification system. In 1792, Mathier named chrysanthemums as Chrysanthemum morifolium and continued to this day, and all the editions of Chinese Pharmacopoeia adopted this scientific name. In the Song dynasty, many local varieties such as Nanyangju, Dengzhouhuang and Dengzhoubai appeared. By the time of the Republic of China, five famous authentic varieties, namely Huaiju, Boju, Chuju, Gongju and Hangju, had been cultivated for medicinal purposes. Boju has been the best medicinal variety since the late Qing dynasty. Hangbaiju has been famous for its tea use, especially the best quality of Huju. Chuju has its own unique characteristics, and it is of good quality both for medicine and tea. Gongju has always been a good tea chrysanthemum. Chrysanthemums are traditionally harvested in September of the lunar calendar, but some of the new varieties cultivated nowadays are harvested earlier. The embryo chrysanthemum in Hangbaiju is a commodity type that collects unopened buds in advance. In ancient times, chrysanthemums were mainly dried in the shade, in modern times, drying methods include drying in the shade, drying in the oven and drying in the sun after steaming. At present, hot air drying is mostly used. In terms of processing, Chrysanthemi Flos was used raw products in ancient times, in modern times, it is still widely used, sometimes stir fried(including stir-fried charcoal). Due to different varieties, producing areas and processing methods, there are certain differences in the proportion of ingredients contained in chrysanthemum. Therefore, it is suggested that chrysanthemums with different varieties, origins and processing methods should be selected according to clinical indications in the development of famous classical formula preparations containing Chrysanthemi Flos.

SELECTION OF CITATIONS
SEARCH DETAIL