Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Braz. j. med. biol. res ; 50(10): e6147, 2017. tab, graf
Article in English | LILACS | ID: biblio-888934

ABSTRACT

Chemotherapy response rates in patients with cholangiocarcinoma remain low, primarily due to the development of drug resistance. Epithelial-mesenchymal transition (EMT) of cancer cells is widely accepted to be important for metastasis and progression, but it has also been linked to the development of chemoresistance. Salinomycin (an antibiotic) has shown some potential as a chemotherapeutic agent as it selectively kills cancer stem cells, and has been hypothesized to block the EMT process. In this study, we investigated whether salinomycin could reverse the chemoresistance of cholangiocarcinoma cells to the chemotherapy drug doxorubicin. We found that combined salinomycin with doxorubicin treatment resulted in a significant decrease in cell viability compared with doxorubicin or salinomycin treatment alone in two cholangiocarcinoma cell lines (RBE and Huh-28). The dosages of both drugs that were required to produce a cytotoxic effect decreased, indicating that these two drugs have a synergistic effect. In terms of mechanism, salinomycin reversed doxorubicin-induced EMT of cholangiocarcinoma cells, as shown morphologically and through the detection of EMT markers. Moreover, we showed that salinomycin treatment downregulated the AMP-activated protein kinase family member 5 (ARK5) expression, which regulates the EMT process of cholangiocarcinoma. Our results indicated that salinomycin reversed the EMT process in cholangiocarcinoma cells by inhibiting ARK5 expression and enhanced the chemosensitivity of cholangiocarcinoma cells to doxorubicin. Therefore, a combined treatment of salinomycin with doxorubicin could be used to enhance doxorubicin sensitivity in patients with cholangiocarcinoma.


Subject(s)
Humans , AMP-Activated Protein Kinases/drug effects , Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Pyrans/pharmacology , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Drug Synergism , Gene Expression Regulation, Neoplastic
2.
Braz. j. med. biol. res ; 47(12): 1044-1049, 12/2014. graf
Article in English | LILACS | ID: lil-727666

ABSTRACT

Protein phosphatase magnesium/manganese-dependent 1D (PPM1D) is a p53-induced phosphatase that functions as a negative regulator of stress response pathways and has oncogenic properties. However, the functional role of PPM1D in bladder cancer (BC) remains largely unknown. In the present study, lentivirus vectors carrying small hairpin RNA (shRNA) targeting PPM1D were used to explore the effects of PPM1D knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of PPM1D significantly inhibited cell growth and colony forming ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that PPM1D silencing increased the proportion of cells in the G0/G1 phase. Downregulation of PPM1D also inhibited 5637 cell tumorigenicity in nude mice. The results of the present study suggest that PPM1D plays a potentially important role in BC tumorigenicity, and lentivirus-mediated delivery of shRNA against PPM1D might be a promising therapeutic strategy for the treatment of BC.


Subject(s)
Animals , Humans , Male , Phosphoprotein Phosphatases/physiology , RNA Interference/physiology , RNA, Small Interfering/pharmacology , Urinary Bladder Neoplasms/pathology , Cell Line, Tumor , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Down-Regulation , Flow Cytometry , Gene Knockdown Techniques , Genetic Vectors , Lentivirus/genetics , Mice, Inbred BALB C , Mice, Nude , Phosphoprotein Phosphatases/genetics , Real-Time Polymerase Chain Reaction , Stress, Physiological/genetics , Tumor Stem Cell Assay , Urinary Bladder Neoplasms/therapy
3.
Southeast Asian J Trop Med Public Health ; 1992 Mar; 23(1): 71-6
Article in English | IMSEAR | ID: sea-34909

ABSTRACT

The purpose of the present study was to observe the survival and development of Clonorchis sinensis metacercariae in their final hosts after Cobalt-60 gamma irradiation of isolated metacercariae or the parasite in fish. Guinea pigs or albino rats were orally infected with irradiated metacercariae by gavage. Bioassay, fecal examination for ova, and necropsy of infected animals, were the methods used for the estimation of minimum effective dose of gamma irradiation to control infectivity of the metacercariae. Results showed that the minimum effective irradiation dose for isolated metacercariae was 0.05 kGy. The LD50 of the irradiation dose for metacercariae in fish was 0.05 kGy, and the minimum effective dose was 0.15 kGy. No significant difference in radiation susceptibility to Co-60 gamma irradiation was found among C. sinensis metacercariae in fishes collected at different localities in northern, middle or southern parts of China. The present finding suggests that irradiation of fish by 0.15 kGy could control infectivity of C. Sinensis metacercariae and thus be adopted as a control measure in preventing infections.


Subject(s)
Animals , China , Clonorchis sinensis/growth & development , Cobalt Radioisotopes/administration & dosage , Evaluation Studies as Topic , Feces/parasitology , Fishes , Food Irradiation/methods , Food Parasitology , Guinea Pigs , Parasite Egg Count , Radioisotope Teletherapy
SELECTION OF CITATIONS
SEARCH DETAIL