ABSTRACT
Background & objectives: Extended-Spectrum Beta-Lactamases (ESBLs) is an important resistance mechanism in Enterobacteriaceae infections. Lack of standard guidelines from Clinical Laboratory Standards Institute (CLSI) for Amp C beta-lactamase detection poses a problem. This study was undertaken to detect ESBLs by phenotypic tests and Amp C beta-lactamase by inhibitor based method. Material and Methods: 200 consecutive non-repetitive isolates of E.coli, Klebsiella and Proteus from clinical samples were screened for ESBLs as per CLSI guidelines and confirmed by PCDT, DDST and E-tests (AB Biodisk, Biomerieux). Amp C beta lactamases were screened by cefoxitin resistance and confirmed by inhibitor (Cloxacillin) based method. Simultaneous occurrence of Amp C and ESBLs was detected by combined disk test (Neo-Sensitabs and Diatabs). Descriptive and Kappa statistics were used. Results: Out of 200 isolates studied, 131 were initially screened as ESBL producers and later 114 (57%) were confirmed by phenotypic methods. E-Test was found most sensitive phenotypic test as compared to PCDT and DDST. 13 strains resistant to cefoxitin (30μg) were found to be pure Amp C producers. Combined disk test detected 36 to be ESBL and Amp C co-producers. Surprisingly, six isolates found sensitive to cefoxitin disk were confirmed as Amp C producers by cloxacillin disk inhibition test. Conclusion: 57% ESBLs and 27.5% Amp C producers were isolated from nosocomial pathogens showing significant resistance to 3rd generation cephalosporins. Phenotypic confirmation by E-test, PCDT & DDST were useful for ESBL identification and for detection of Amp C, cloxacillin was found to be an effective inhibitor.
ABSTRACT
Purpose : Amp C beta-lactamase are Ambler class C enzymes that confer resistance to extended spectrum cephalosporins and are not inhibited by beta-lactamase inhibitors. Their detection is crucial, since the phenotypic tests are not standardised leading to ambiguity in interpretation of results. This study was done to detect the types of Amp C prevalent in Escherichia coli and Klebsiella pneumoniae by multiplex polymerase chain reaction (PCR). Materials and Methods : Seventy-seven consecutive cefoxitin resistant clinical isolates of E. coli (n = 25) and K. pneumoniae (n = 52) were included in the study. Antibiotic susceptibility testing to various classes of antibiotics was performed by disc diffusion using Clinical Laboratory Standards Institute (CLSI) guidelines. Minimum inhibitory concentration (MIC) to cefoxitin, imipenem and meropenem were determined by broth microdilution method. Isolates were screened for production of Extended Spectrum Beta-Lactamase (ESBL). Multiplex PCR was performed for the detection of Amp C genes after phenotypic testing (Hodge test and inhibitor based test). Results : Cefoxitin Hodge test was positive in 40 isolates which included 20 E. coli and 20 K. pneumoniae. There was zone enhancement with boronic acid in 55 isolates, of which 36 were K. pneumoniae and 19 were E. coli. Multiplex PCR detected Amp C in 11/25 E. coli and 12/52 K. pneumoniae isolates. The Amp C genes detected were CIT (Amp C origin - Citrobacter freundii), DHA (Dhahran Hospital, Saudi Arabia), ACC (Ambler class C), EBC (Amp C origin - Enterobacter cloacae) groups. ESBL was co-produced in 54 isolates. Conclusions : Amp C was detected in 29.87% of the study isolates. Majority of them co-produced ESBL. The most common Amp C was the CIT family. Screen tests for cefoxitin resistance may be falsely positive due to production of carbapenamases.