Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Article in Chinese | WPRIM | ID: wpr-1030653

ABSTRACT

Liver fibrosis is a repair response to chronic liver injury caused by various etiologies. Its continuous progression can develop into liver cirrhosis or even hepatocellular carcinoma, eventually leading to liver failure. Currently, there is no effective treatment for liver fibrosis. Hepatic macrophages play a key role in intrahepatic inflammatory response, progression and resolution of fibrosis, and have emerged as an important therapeutic target for anti-hepatic fibrosis. The function of hepatic macrophages in the process of liver fibrosis was mainly reviewed and the mode of action of hepatic macrophages from various aspects was discussed to provide ideas for the treatment of liver fibrosis.

2.
Article in Chinese | WPRIM | ID: wpr-987033

ABSTRACT

OBJECTIVE@#To explore the effect of leucine-rich α-2-glycoprotein (LRG1) derived from hepatocytes on activation of hepatic M1 Kupffer cells.@*METHODS@#A metabolic dysfunction-associated fatty liver disease (MAFLD) model was established in BALB/c mice by high-fat diet (HFD) feeding for 16 weeks. Oleic acid was used to induce steatosis in primary cultures of mouse hepatocytes. The mRNA and protein expressions of LRG1 in mouse liver tissues and hepatocytes were detected by real-time PCR and Western blotting. Primary hepatic macrophages were stimulated with the conditioned medium (CM) from steatotic hepatocyte along with LRG1 or transforming growth factor-β1 (TGF-β1), or both for 24 h, and the expression levels of inducible nitric oxide synthase (iNOS) was detected with Western botting, and the mRNA expressions of iNOS, chemokine ligand 1 (CXCL-1) and interleukin-1β (IL-1β) were measured by RT-PCR. The MAFLD mice were injected with LRG1 (n=6), TGF-β1 (n=6), or both (n=6) through the caudal vein, and the live tissues were collected for HE staining and immumohistochemical detection of F4/80 expression; the mRNA expressions of iNOS, CXCL-1 and IL-1β in liver tissues were detected using RT-PCR.@*RESULTS@#The mRNA and protein expression levels of LRG1 were significantly downregulated in the liver tissues of MAFLD mice and steatotic hepatocytes (P < 0.05). Treatment of the hepatic macrophages with CM from steatosis hepatocytes significantly enhanced the mRNA expression levels of iNOS, CXCL-1 and IL-1β, and these changes were significantly inhibited by the combined treatment with TGF-β1 and LRG1 (P < 0.05). In MAFLD mice, injections with either LRG1 or TGF-β1 alone reduced hepatic lipid deposition and intrahepatic macrophage infiltration, and these effects were significantly enhanced by their combined treatment, which also more strongly inhibited the mRNA expression levels of iNOS, CXCL-1 and IL-1β (P < 0.05).@*CONCLUSION@#LRG1 inhibits hepatic macrophage infiltration by enhancing TGF-β1 signaling to alleviate fatty liver inflammation in MAFLD mice.


Subject(s)
Animals , Mice , Transforming Growth Factor beta1 , Macrophage Activation , Signal Transduction , Non-alcoholic Fatty Liver Disease , Culture Media, Conditioned , Glycoproteins
3.
Immune Network ; : e24-2018.
Article in English | WPRIM | ID: wpr-715077

ABSTRACT

Ischemia-reperfusion injury (IRI) is a major complication in liver transplantation (LT) and it is closely related to the recovery of grafts' function. Researches has verified that both innate and adaptive immune system are involved in the development of IRI and Kupffer cell (KC), the resident macrophages in the liver, play a pivotal role both in triggering and sustaining the sterile inflammation. Damage-associated molecular patterns (DAMPs), released by the initial dead cell because of the ischemia insult, firstly activate the KC through pattern recognition receptors (PRRs) such as toll-like receptors. Activated KCs is the dominant players in the IRI as it can secret various pro-inflammatory cytokines to exacerbate the injury and recruit other types of immune cells from the circulation. On the other hand, KCs can also serve in a contrary way to ameliorate IRI by upregulating the anti-inflammatory factors. Moreover, new standpoint has been put forward that KCs and macrophages from the circulation may function in different way to influence the inflammation. Managements towards KCs are expected to be the effective way to improve the IRI.


Subject(s)
Cytokines , Hand , Immune System , Inflammation , Ischemia , Kupffer Cells , Liver Transplantation , Liver , Macrophages , Receptors, Pattern Recognition , Reperfusion Injury , Reperfusion , Toll-Like Receptors
SELECTION OF CITATIONS
SEARCH DETAIL