Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Psico USF ; 28(4): 685-696, Oct.-Dec. 2023. ilus, tab
Article in English | LILACS, INDEXPSI | ID: biblio-1529170

ABSTRACT

Nonparametric procedures are used to add flexibility to models. Three nonparametric item response models have been proposed, but not directly compared: the Kernel smoothing (KS-IRT); the Davidian-Curve (DC-IRT); and the Bayesian semiparametric Rasch model (SP-Rasch). The main aim of the present study is to compare the performance of these procedures in recovering simulated true scores, using sum scores as benchmarks. The secondary aim is to compare their performances in terms of practical equivalence with real data. Overall, the results show that, apart from the DC-IRT, which is the model that performs the worse, all the other models give results quite similar to those when sum scores are used. These results are followed by a discussion with practical implications and recommendations for future studies.(AU)


Procedimentos não paramétricos são usados para adicionar flexibilidade aos modelos. Três modelos não paramétricos de resposta ao item foram propostos, mas não comparados diretamente: o Kernel smoothing (KS-IRT); a Curva Davidiana (DC-IRT); e o modelo semiparamétrico Rasch Bayesiano (SP-Rasch). O objetivo principal do presente estudo é comparar o desempenho desses procedimentos na recuperação de escores verdadeiros simulados, utilizando escores de soma como benchmarks. O objetivo secundário é comparar seus desempenhos em termos de equivalência prática com dados reais. De forma geral, os resultados mostram que, além do DC-IRT, que é o modelo que apresenta o pior desempenho, todos os outros modelos apresentam resultados bastante semelhantes aos de quando se usam somatórios. Esses resultados são seguidos de uma discussão com implicações práticas e recomendações para estudos futuros.(AU)


Se utilizan procedimientos no paramétricos para agregar flexibilidad a los modelos. Se propusieron tres modelos de respuesta al ítem no paramétricos, pero no se compararon directamente: Kernel smoothing (KS-IRT); la curva davidiana (DC-IRT); y el modelo bayesiano de Rasch semiparamétrico (SP-Rasch). El objetivo principal del presente estudio es comparar el desempeño de estos procedimientos en la recuperación de puntajes verdaderos simulados, utilizando puntajes de suma como puntos de referencia. El objetivo secundario es comparar su desempeño en términos de equivalencia práctica con datos reales. En general, los resultados muestran que, a excepción de DC-IRT, que es el modelo con peor desempeño, todos los otros modelos presentan resultados bastante similares a los obtenidos cuando se utilizan sumatorios. Estos resultados son seguidos por una discusión con implicaciones prácticas y recomendaciones para estudios futuros.(AU)


Subject(s)
Statistics as Topic , Monte Carlo Method , Models, Statistical , Bayes Theorem , Statistics, Nonparametric , Correlation of Data
SELECTION OF CITATIONS
SEARCH DETAIL