Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 910
Filter
1.
Braz. j. med. biol. res ; 57: e12857, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534068

ABSTRACT

Abstract MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.

2.
Journal of Traditional Chinese Medicine ; (12): 213-218, 2024.
Article in Chinese | WPRIM | ID: wpr-1005373

ABSTRACT

ObjectiveTo observe the effects of electroacupuncture at Zhongwan (CV12) on gastric nociceptive response induced by gastric acid stimulation and explore the underlying mechanisms associated with nuclei of the medullary viscerosensory and visceral motor neurons. MethodsTwenty SD rats were given intragastric administration of 0.5 mol/L diluted hydrochloric acid (0.5 ml/100 g) to induce gastric nociceptive response induction. Eight rats were randomly selected to record the gastric slow wave (GSW) area under the curve, and extracellular discharge frequency of neurons in the nucleus of the solitary tract (NTS) and dorsal motor nucleus of the vagus nerve (DMV) before intragastric administration and at 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and 60 minutes after intragastric administration. The remaining 12 rats received electroacupuncture intervention at Zhongwan within 5 to 25 minutes after intragastric administration of diluted hydrochloric acid, with a duration of one minute. The GSW area under the curve and extracellular discharge frequency of NTS and DMV neurons were compared between the 1-minute intervals before and after electroacupuncture intervention. ResultsCompared to the baseline before intragastric administration, the area under the curve of GSW significantly increased at 1, 5, 10, 15, 20, and 25 minutes after intragastric administration, and the extracellular discharge frequency of excitatory neurons in the NTS (accounting for 90%, 57/63) significantly increased at 1, 5, 10, 15, 20, 25, 30, 35, and 40 minutes, both reaching peak values at 1 minute after intragastric administration (P<0.01 or P<0.05). The extracellular discharge frequency of inhibitory neurons in the DMV (accounting for 91%, 20/22) showed a non-significant increase at 1 minute after intragastric administration (P>0.05), but significantly decreased at other timepoints (P<0.05). Compared to the baseline before electroacupuncture intervention, the GSW area under the curve and the extracellular discharge frequency of excitatory neurons in the NTS significantly decreased (P<0.05), while the extracellular discharge frequency of inhibitory neurons in the DMV showed no significant difference (P>0.05). ConclusionElectroacupuncture at Zhongwan can improve gastric nociceptive response induced by gastric acid stimulation, possibly by reducing the transmission of visceral sensation and decreasing the excitability of NTS neurons in the medulla.

3.
Int. j. morphol ; 41(6)dic. 2023.
Article in English | LILACS | ID: biblio-1528785

ABSTRACT

SUMMARY: Intervertebral disc degeneration (IVDD) is induced by nucleus pulposus (NP) dysfunction as a result of massive loss of NP cells. It has been reported that the acidic microenvironment of the intervertebral disc (IVD) can induce NP cell pyroptosis, and that up-regulation of periostin (POSTN) expression has a negative effect on NP cell survival. However, the relationship between the acidic environment, POSTN expression level and NP cell pyroptosis is unclear. Therefore, the aim of this study was to explore the relationship between acidic environment and POSTN expression level in NP cells, as well as the effect of POSTN in acidic environment on NP cell pyroptosis. NP cells were obtained from the lumbar vertebrae of Sprague Dawley (SD) male rats. These cells were divided into normal and acidic groups according to whether they were exposed to 6 mM lactic acid solution. And NP cells in the acidic group were additionally divided into three groups: (1) Blank group: no transfection; (2) NC group: cells transfected with empty vector plasmid; (3) sh-POSTN group: cells transfected with sh-POSTN plasmid to knock down the expression level of POSTN. Quantitative real-time PCR (qRT-PCR) and western blot was performed to assess the expression of POSTN at the mRNAand protein levels. CCK8 was used to evaluate cell survival. Western blot, in addition, was performed to examine acid-sensing ion channels (ASIC)-related proteins. And pyroptosis was detected by ELISA and western blot. The expression level of POSTN was significantly increased in NP cells in acidic environment. Knockdown of POSTN expression promoted the survival of NP cells in acidic environment and reduced the protein levels of ASIC3 and ASIC1a in NP cells. Moreover, knockdown of POSTN expression decreased the pyroptosis proportion of NP cells and the levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. The levels of pyroptosis-related proteins NLRP3, ASC, cleaved-Caspase-1, and cleaved-GSDMD were also affected by the decreased POSTN expression. The extracellular acidic environment created by lactic acid solution activated NLRP3 inflammatory vesicle-induced caspase-1 to get involved in NP cell pyroptosis by up-regulating POSTN expression.


La degeneración del disco intervertebral (DDIV) es inducida por una disfunción del núcleo pulposo (NP) como resultado de una pérdida masiva de células NP. Se ha informado que el microambiente ácido del disco intervertebral (DIV) puede inducir la piroptosis de las células NP y que la regulación positiva de la expresión de periostina (POSTN) tiene un efecto negativo en la supervivencia de las células NP. Sin embargo, la relación entre el ambiente ácido, el nivel de expresión de POSTN y la piroptosis de las células NP es poco clara. Por lo tanto, el objetivo de este estudio fue explorar la relación entre el ambiente ácido y el nivel de expresión de POSTN en células NP, así como el efecto de POSTN en ambiente ácido sobre la piroptosis de las células NP. Las células NP se obtuvieron de las vertebras lumbares de ratas macho Sprague Dawley (SD). Estas células se dividieron en grupos normales y ácidos según se expusieron a una solución de ácido láctico 6 mM. Las células NP en el grupo ácido se dividieron adicionalmente en tres grupos: (1) Grupo en blanco: sin transfección; (2) grupo NC: células transfectadas con plásmido vector vacío; (3) grupo sh-POSTN: células transfectadas con plásmido sh-POSTN para reducir el nivel de expresión de POSTN. Se realizó una PCR cuantitativa en tiempo real (qRT-PCR) y una transferencia Western para evaluar la expresión de POSTN en los niveles de ARNm y proteína. Se utilizó CCK8 para evaluar la supervivencia celular. Además, se realizó una transferencia Western para examinar las proteínas relacionadas con los canales iónicos sensibles al ácido (ASIC). La piroptosis se detectó mediante ELISA y Western blot. El nivel de expresión de POSTN aumentó significativamente en células NP en ambiente ácido. La eliminación de la expresión de POSTN promovió la supervivencia de las células NP en un ambiente ácido y redujo los niveles de proteína de ASIC3 y ASIC1a en las células NP. Además, la eliminación de la expresión de POSTN disminuyó la proporción de piroptosis de las células NP y los niveles de citocinas proinflamatorias interleucina (IL) - 1β e IL-18. Los niveles de proteínas relacionadas con la piroptosis NLRP3, ASC, Caspasa-1 escindida y GSDMD escindida también se vieron afectados por la disminución de la expresión de POSTN. El ambiente ácido extracelular creado por la solución de ácido láctico activó la caspasa-1 inducida por vesículas inflamatorias NLRP3 para involucrarse en la piroptosis de las células NP mediante la regulación positiva de la expresión de POSTN.


Subject(s)
Animals , Male , Rats , Acids/chemistry , Cell Adhesion Molecules/metabolism , Intervertebral Disc Degeneration , Nucleus Pulposus/physiopathology , Enzyme-Linked Immunosorbent Assay , Cell Adhesion Molecules/genetics , Cell Survival , Blotting, Western , Rats, Sprague-Dawley , Environment , Real-Time Polymerase Chain Reaction , Nucleus Pulposus/cytology , NLR Family, Pyrin Domain-Containing 3 Protein
4.
Acta neurol. colomb ; 39(3)sept. 2023.
Article in Spanish | LILACS | ID: biblio-1533500

ABSTRACT

Introducción: En pacientes con epilepsia del lóbulo temporal refractarios que no son candidatos a cirugía, se debe considerar la estimulación eléctrica cerebral como una opción. Contenido: La estimulación eléctrica cerebral es la administración directa de pulsos eléctricos al tejido nervioso que permite modular un sustrato patológico, interrumpir la manifestación clínica de las crisis y reducir la gravedad de estas. Así, dada la importancia de estos tratamientos para los pacientes con epilepsia del lóbulo temporal refractaria, se hace una revisión de cuatro tipos de estimulación eléctrica. La primera, la del nervio vago, es una buena opción en crisis focales y crisis generalizadas o multifocales. La segunda, la del hipocampo, es más útil en pacientes no candidatos a lobectomía por riesgo de pérdida de memoria, con resonancia magnética normal o sin esclerosis mesial temporal. La tercera, la del núcleo anterior, es pertinente principalmente en pacientes con crisis focales, pero debe realizarse con precaución en pacientes con alto riesgo de cambios cognitivos, como los ancianos, o en los que presentan alteración del estado de ánimo basal, y, por último, la del núcleo centromediano se recomienda para el tratamiento crisis focales en el síndrome de Rasmussen y crisis tónico-clónicas en el síndrome de Lennox-Gastaut. Conclusiones: El interés por la estimulación eléctrica cerebral ha venido aumentando, al igual que las estructuras diana en las cuales se puede aplicar, debido a que es un tratamiento seguro y eficaz en pacientes con epilepsia del lóbulo temporal para controlar las crisis, pues disminuye la morbimortalidad y aumenta la calidad de vida.


Introduction: In patients with refractory temporal lobe epilepsy who are not candidates for surgery, electrical brain stimulation should be considered as another option. Contents: Electrical brain stimulation is the direct administration of electrical pulses to nerve tissue that modulates a pathological substrate, interrupts the clinical manifestation of seizures, and reduces their severity. Thus, given the importance of these treatments for patients with refractory temporal lobe epilepsy, four types of electrical stimulation are reviewed. The first, vagus nerve stimulation, is a good option in focal seizures and generalized or multifocal seizures. The second, hippocampal stimulation, is more useful in patients who are not candidates for lobectomy due to the risk of memory loss, with normal MRI or without mesial temporal sclerosis. The third, the anterior nucleus, is mainly in patients with focal seizures, but with caution in patients at high risk of cognitive changes such as the elderly, or in those with baseline mood disturbance and, finally, the centromedian nucleus is recommended for the treatment of focal seizures in Rasmussen's syndrome and tonic-clonic seizures in Lennox-Gastaut syndrome. Conclusions: the interest in brain electrical stimulation has been increasing as well as the target structures in which it can be applied because it is a safe and effective treatment in patients with temporal lobe epilepsy to control seizures, decreasing morbidity and mortality and increasing quality of life


Subject(s)
Anterior Thalamic Nuclei , Intralaminar Thalamic Nuclei , Epilepsy, Temporal Lobe , Vagus Nerve Stimulation , Electric Stimulation , Hippocampus
5.
Int. j. morphol ; 41(3): 789-797, jun. 2023. ilus
Article in English | LILACS | ID: biblio-1514318

ABSTRACT

SUMMARY: Diacylglycerol kinase (DGK) exerts balancing the intracellular level between two-second messengers, diacylglycerol and phosphatidic acid, by its phosphorylation activity. DGK ζ is often localized in cell nuclei, suggesting its involvement in the regulation of intranuclear activities, including mitosis and apoptosis. The present immunohistochemical study of rat kidneys first revealed no detection levels of DGK ζ -immunoreactivity in nuclei of most proximal tubule epithelia in contrast to its distinct occurrence in cell nuclei of collecting and distal tubules with the former more dominant. This finding suggests that DGK ζ is a key factor regulating vulnerability to acute kidney injury in various renal tubules: its low expression represents the high vulnerability of proximal tubule cells, and its distinct expression does the resistance of collecting and distal tubule cells. In addition, this isozyme was more or less localized in nuclei of cells forming glomeruli as well as in endothelial nuclei of peritubular capillaries and other intrarenal blood vessels, and epithelial nuclei of glomerular capsules (Bowman's capsules) and renal calyces, including intrarenal interstitial cells.


La diacilglicerol quinasa (DGK) ejerce el equilibrio del nivel intracelular entre dos segundos mensajeros, diacilglicerol y ácido fosfatídico, por su actividad de fosforilación. La DGK ζ a menudo se localiza en los núcleos celulares, lo que sugiere su participación en la regulación de las actividades intranucleares, incluidas la mitosis y la apoptosis. El presente estudio inmunohistoquímico en riñones de rata no reveló niveles de detección de inmunorreactividad de DGK ζ en los núcleos de la mayoría de los epitelios de los túbulos proximales, en contraste a la detección en los núcleos celulares de los túbulos colectores y distales, siendo el primero más dominante. Este hallazgo sugiere que DGK ζ es un factor clave que regula la vulnerabilidad a la lesión renal aguda en varios túbulos renales: su baja expresión representa la alta vulnerabilidad de las células del túbulo proximal, y su expresión distinta hace a la resistencia de las células del túbulo colector y distal. Además, esta isoenzima estaba más o menos localizada en los núcleos de las células que forman los glomérulos, así como en los núcleos endoteliales de los capilares peritubulares y otros vasos sanguíneos intrarrenales, y en los núcleos epiteliales de las cápsulas glomerulares (cápsulas de Bowman) y los cálices renales, incluidas las células intersticiales intrarrenales.


Subject(s)
Animals , Rats , Diacylglycerol Kinase/metabolism , Kidney Tubules/metabolism , Immunohistochemistry , Microscopy, Immunoelectron , Rats, Sprague-Dawley , Diacylglycerol Kinase/ultrastructure , Kidney Tubules/ultrastructure
6.
Article | IMSEAR | ID: sea-222318

ABSTRACT

In a country like India, oral metronidazole is the commonly prescribed drug of choice for entities such as amebiasis and visceral abscesses. Oral such cases, it is usually well tolerated and safe but can cause serious neurological adverse events. Peripheral neuropathy commonly encounters in practice but central nervous system toxicity is also well documented as it crosses the blood–brain barrier easily. Neurological toxicity of metronidazole may be due to prolonged administration, high doses, or high cumulative doses. Magnetic resonance imaging (MRI) of brain is the modality of choice to evaluate brain involvement. In the brain, the splenium of the corpus callosum, dentate nucleus of the cerebellum, and posterior pons involvement are commonly seen and diagnostic. Here, we have an interesting case report of a patient who was on oral metronidazole treatment for his large liver abscess, presenting with a complaint of neurological symptoms of unsteady gait, vertigo, dysdiadochokinesia, and difficulty in speech. Moreover, thus suspected as metronidazole drug toxicity and further investigated for the same, and MRI typically shows cerebellar and posterior corpus callosal involvement

7.
Arq. neuropsiquiatr ; 81(3): 263-270, Mar. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439448

ABSTRACT

Abstract Background Deep Brain Stimulation (DBS) is an established treatment option for refractory dystonia, but the improvement among the patients is variable. Objective To describe the outcomes of DBS of the subthalamic region (STN) in dystonic patients and to determine whether the volume of tissue activated (VTA) inside the STN or the structural connectivity between the area stimulated and different regions of the brain are associated with dystonia improvement. Methods The response to DBS was measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BFM) before and 7 months after surgery in patients with generalized isolated dystonia of inherited/idiopathic etiology. The sum of the two overlapping STN volumes from both hemispheres was correlated with the change in BFM scores to assess whether the area stimulated inside the STN affects the clinical outcome. Structural connectivity estimates between the VTA (of each patient) and different brain regions were computed using a normative connectome taken from healthy subjects. Results Five patients were included. The baseline BFM motor and disability subscores were 78.30 ± 13.55 (62.00-98.00) and 20.60 ± 7.80 (13.00-32.00), respectively. Patients improved dystonic symptoms, though differently. No relationships were found between the VTA inside the STN and the BFM improvement after surgery (p = 0.463). However, the connectivity between the VTA and the cerebellum structurally correlated with dystonia improvement (p = 0.003). Conclusions These data suggest that the volume of the stimulated STN does not explain the variance in outcomes in dystonia. Still, the connectivity pattern between the region stimulated and the cerebellum is linked to outcomes of patients.


Resumo Antecedentes A estimulação cerebral profunda (ECP) é um tratamento estabelecido para distonias refratárias. Porém, a melhora dos pacientes é variável. Objetivo O objetivo do estudo foi descrever os desfechos da ECP da região do núcleo subtalâmico (NST) e determinar se o volume de tecido ativado (VTA) dentro do NST ou se a conectividade estrutural entre a área estimulada e diferentes regiões cerebrais estão associadas a melhora da distonia. Métodos A resposta da ECP em pacientes com distonia generalizada isolada de etiologia hereditária/idiopática foi mensurada pela escala de Burke-Fahr-Marsden Dystonia Rating Scale (BFM) antes e 7 meses após a cirurgia. A soma dos volumes do NST nos dois hemisférios foi correlacionada com a melhora nos escores do BFM para avaliar se a área estimulada dentro do NST afeta o desfecho clínico. A conectividade estrutural estimada entre o VTA de cada paciente e as diferentes regiões cerebrais foram computadas usando um conectoma normativo retirado de indivíduos saudáveis. Resultados Cinco pacientes com idade de 40,00 ± 7,30 anos foram incluídos. O BFM motor e de incapacidade basal eram de 78,30 ± 13,55 (62,00-98,00) e 20,60 ± 7,80 (13,00-32,00), respectivamente. Os pacientes melhoraram com a cirurgia, mas com variabilidade. Não houve relação entre o VTA dentro do NST e a melhora do BFM após a cirurgia (p = 0.463). Entretanto, a conectividade estrutural entre o VTA e o cerebelo correlacionaram com a melhora da distonia (p = 0.003). Conclusão Os dados sugerem que o VTA dentro do NST não explica a variabilidade do desfecho clínico na distonia. Porém, o padrão de conectividade entre a região estimulada e o cerebelo foi relacionada com o desfecho dos pacientes.

8.
Indian J Ophthalmol ; 2023 Mar; 71(3): 784-789
Article | IMSEAR | ID: sea-224932

ABSTRACT

Purpose: To investigate the prognostic factors for visual outcome in patients undergoing immediate pars plana vitrectomy (PPV) for posteriorly dislocated lens fragments during phacoemulsification surgery. Methods: This was a single?center, retrospective, cross?sectional study of 37 eyes of 37 patients undergoing immediate PPV for posteriorly dislocated lens fragments from 2015 to 2021. The primary outcome measure was changes in the best?corrected visual acuity (BCVA). Additionally, we analyzed the predictive factors for poor visual outcomes (BCVA <20/40) and perioperative complications. Results: The mean (±standard deviation [SD]) age of the patients was 66.57 (±10.86) years, with an almost identical gender profile (M: F = 18/19 [48.64%:51.36%]). The median (interquartile range [IQR]) log of minimum angle of resolution (logMAR) BCVA improved significantly from the baseline (1 [0.6–1.48], ~20/200) to the final visit (0.3 [0.2–0.6], ~20/40) (P < 0.0001) after a mean (±SD) follow?up of 6.35 (±6.32) months. The final BCVA was 20/40 or better in 59.5% of the eyes. Poor final BCVA (<20/40) was associated with small preoperative pupillary size (P = 0.02), presence of preoperative ocular pathology (P = 0.02) including uveitis, glaucoma, and clinically significant macular edema (CSME), intraoperative displacement of >50% of lens matter into the vitreous (P < 0.001), use of iris?claw lens (P < 0.001), and postoperative cystoid macular edema (CME; P = 0.007). The postoperative complications included CME (13.51%), retinal detachment (10.81%), chronic uveitis (8.11%), glaucoma (8.11%), iritis (2.7%), posterior chamber IOL (PCIOL) dislocation (2.7%), and vitreous hemorrhage (2.7%). Conclusion: For retained lens fragments in complicated phacoemulsification surgery, immediate PPV is a viable approach with the potential for a good visual outcome. The important predictors for poor visual outcomes include a small preoperative pupil size, preexisting ocular pathology, displacement of significant volume of lens matter (>50%), use of an iris?claw lens, and CME.

9.
Chinese Journal of Pharmacology and Toxicology ; (6): 539-540, 2023.
Article in Chinese | WPRIM | ID: wpr-992214

ABSTRACT

In addition to the essential pharmacologi-cal effects of opioids,situational cues associated with drug addiction memory are key triggers for drug seeking.CircRNAs,an emerging hotspot regulator in crown genet-ics-play an important role in central nervous system-relat-ed diseases.However,the internal mediating mechanism of circRNA in the field of drug reward and addiction mem-ory remains unknown.Here,we trained mice on a condi-tional place preference(CPP)model and collected nucle-us accumbens(NAc)tissues from day 1(T0)and day 8(T1)for high-throughput RNA sequencing.qRT-PCR revealed that circTmeff-1 was highly expressed in the NAc core but not in the NAc shell,suggesting that it plays a role in addiction memory formation.Meanwhile,the reverse regulation of circTmeff-1 by adeno-associated viruses could both inhibit the formation of addiction mem-ory in the NAc core or shell.Subsequently,the GO and KEGG analyses indicated 21 that circTmeff-1 might regu-late the addiction memory via the MAPK and AMPK path-ways.These findings suggest that circTmeff-1 in NAc plays a crucial role in morphine-dependent memory for-mation.

10.
Chinese Journal of Pharmacology and Toxicology ; (6): 536-537, 2023.
Article in Chinese | WPRIM | ID: wpr-992213

ABSTRACT

OBJECTIVE The preference for social novelty is crucial to the social life of humans and rodents.However,the neural mechanisms underlying social novelty preference are poorly understood.Dorsal hippocampal CA3(dCA3)is an important brain area that responds to social defeat stress,and the neural circuitry of dCA3→lat-eral septum(LS)participates in the context-associated memory.Meanwhile,the parvafox nucleus(PFN)Foxb1+ neurons regulate the defensive reaction to life-threaten-ing situations.Therefore,we investigate a cell-specific cir-cuit of dCA3CaMKⅡα+→dorsal LSGABA+→PFNFoxb1+ in social novelty preference.METHODS Chronic social defeat stress(CSDS)and three-chamber social interaction test were performed in adult male C57BL/6J mice to detect social behaviors.Optogenetic and chemical-genetic experiments were conducted to regulate the circuit.RESULTS CSDS reduced the preference for social nov-elty in mice and the response of dCA3CaMKⅡα+ neurons dur-ing approach to an unfamiliar mouse was impaired by CSDS.Optogenetic inhibition of dCA3CaMKⅡα+→dLS pro-jection reduced the preference for the unfamiliar mouse versus a familiar mouse.Meanwhile,optogenetic activa-tion of dCA3CaMKⅡα+→dLS projection rescued the prefer-ence for social novelty of CSDS-treated mice.Manipula-tions dLSGABA+→PFN projection activation regulated the preference for social novelty in mice.Optogenetic activa-tion of PFNFoxb1+→lPAG projection reduced the prefer-ence for a familiar C57BL/6J mouse versus a novel object in control mice.CSDS decreased the excitability of dCA3CaMKⅡα+ neurons by up-regulation of Kir2.4(Kcnj14)expression.CONCLUSION Our present study suggest-ed that activation of a cell-specific circuit of dCA3CaMKⅡα+→dLSGABA+→PFNFoxb1+→lPAG reverses the deficits of social novelty preference in defeated mice,and inhibition of this circuit reduces the preference for social novelty.The cir-cuit that regulates the preference for social novelty deficits may provide a new information for the potential therapeu-tic targets for neuropsychiatric diseases.

11.
Chinese Journal of Pharmacology and Toxicology ; (6): 523-524, 2023.
Article in Chinese | WPRIM | ID: wpr-992205

ABSTRACT

OBJECTIVE Trigeminal pain is mostly uni-lateral orofacial,but pain sensitization often spreads to contralateral orofacial or distal body regions.Widespread trigeminal pain has more severe intensity,longer dura-tion,and wider distribution,accompanied by more serious comorbid emotional syndrome.Unfortunately,the first-line analgesics for neuropathic pain has limited effect on widespread pain along with unavoidable side effects.In-depth understanding of the pathogenesis of wide-spread trigeminal pain is urgently needed.METHODS Trigeminal pain was induced by partial transection of the infraorbital nerve(p-IONX)and evaluated by measur-ing nociceptive thresholds to mechanical or heat stimula-tion.Neuronal activity was evaluated by single-unit and patch clamp recordings.HMGB1 expression was mea-sured by immunohistochemistry.Antagonism of HMGB1 was achieved by injecting anti-HMGB1 monoclonal anti-body(mAb)intracerebrally or intraperitoneally.RESULTS P-IONX model induced not only orofacial algesia but also somatic algesia in hind paw.Spontaneous firing frequency of glutamatergic neurons in the ventral posteromedial tha-lamic nucleus(VPMGlu)as well as the amplitude and fre-quency of sEPSCs significantly increased after p-IONX.Moreover,calcium signal recording showed that VPMGlu became to be activated by the noxious mechanical stimu-lation given on the hind paw,suggesting that VPMGlu recruited somatic afferents after p-IONX.We further explored the upstream brain regions of VPMGlu by virus retrograde tracing.We found the afferents from the grac-ile nucleus/cuneate nucleus(Gr/Cu),which are involved in the conduction of somatic sensation,markedly increased.And chemogenetical inhibiting Gr/Cu-VPM circuit alleviated the widespread neuropathic pain.In addition,the expression of HMGB1 in the VPM was sig-nificantly increased after p-IONX.Local administration of anti-HMGB1 mAb in the VPM relieved widespread neuro-pathic pain in mice receiving p-IONX.CONCLUSION These results demonstrate that the remodeling of affer-ent neurons in VPM underlie the spreading of wide-spread trigeminal neuropathic pain.Highly expressed HMGB1 in VPM plays an important role in these patho-logical changes after nerve injury and systemic adminis-tration of anti-HMGB1 mAb concurrently relieves wide-spread pain.

12.
Chinese Journal of Behavioral Medicine and Brain Science ; (12): 127-132, 2023.
Article in Chinese | WPRIM | ID: wpr-992066

ABSTRACT

Objective:To investigate the neurobiochemical metabolites of caudate nucleus and thalamus in patients with obsessive-compulsive disorder and their relationship with obsessive-compulsive symptoms.Methods:From April 2019 to January 2022 in Beijing Anding Hospital, totally 25 untreated patients with obsessive-compulsive disorder were recruited, and 20 healthy controls matched with gender, age and educational background were recruited for the study.The maps of neurobiochemical metabolites of patients and normal controls were collected by hydrogen proton magnetic resonance spectroscopy.With bilateral caudate nucleus and thalamus as brain regions of interest.The relative concentrations of N-acetylaspartic acid (NAA), glutamic acid (Glu) and γ-aminobutyric acid (GABA) were fitted by LCModel software.At the same time, the clinical symptoms of patients were evaluated with Yale-Brown obsessive-compulsive scale (Y-BOCS) and Hamilton anxiety scale (HAMA). SPSS 20.0 software was used for statistical analysis.Independent double sample t-test was used to compare the differences of different nerve biochemical metabolite concentrations between patients with obsessive-compulsive disorders and healthy controls.Pearson correlation analysis was used to explore the correlation between biochemical metabolite concentrations and clinical symptoms. Results:The Glu concentration in the left thalamus of patients with obsessive-compulsive disorder (3.97±0.41) was higher than that of the control group (3.66±0.55)( t=-2.11, P<0.05), while the NAA concentration was (4.87±0.47)lower than that of the control group (5.15±0.44)( t=2.05, P<0.05). The GABA concentrations in the right caudate nucleus (0.50±0.18) and thalamus (0.80±0.19) were lower than those in the control group ((0.63±0.23), (0.96±0.24))( t=2.08, 2.36, both P<0.05). Pearson correlation analysis showed that the Glu concentration in the left caudate nucleus of patients with obsessive-compulsive disorder was positively correlated with the total score of Y-BOCS( r=0.46, P<0.05). Spearman correlation analysis showed that Glu concentration in the right caudate nucleus was positively correlated with the total score of HAMA in patients with obsessive-compulsive disorder ( r=0.46, P<0.05). Conclusion:NAA, Glu and GABA metabolism in caudate nucleus and thalamus are abnormal in patients with obsessive-compulsive disorder, and Glu concentration is positively correlated with the severity of obsessive-compulsive and anxiety symptoms.

13.
Journal of Clinical Hepatology ; (12): 2366-2374, 2023.
Article in Chinese | WPRIM | ID: wpr-998303

ABSTRACT

ObjectiveTo investigate the effect of cSN50.1 on the proliferation, migration, invasion, and colony formation of HepG2 cells and its mechanism. MethodsHepG2 cells were divided into cSN50.1 0 μmol/L, cSN50.1 10 μmol/L, cSN50.1 30 μmol/L, cSN50.1 50 μmol/L, cSN50.1 70 μmol/L, and cSN50.1 90 μmol/L groups, and CCK-8 assay was used to investigate the effect of different concentrations of cSN50.1 on the proliferation of HepG2 cells and calculate half-maximal inhibitory concentration (IC50). HepG2 cells were divided into cSN50.1 0 μmol/L, cSN50.1 10 μmol/L, cSN50.1 30 μmol/L, and cSN50.1 50 μmol/L groups, and wound healing assay, Transwell assay, and colony-forming assay were used to investigate the effect of different concentrations of cSN50.1 on the migration, invasion, and colony formation of HepG2 cells. HepG2 cells were divided into Control group, SP600125 group (an inhibitor of the AP-1 signaling pathway), and cSN50.1 group to investigate the influence of the AP-1 signaling pathway on the effect of cSN50.1 on hepatocellular carcinoma cells, and RT-PCR and Western Blot were used to measure the expression of CXCL5, TNF-α, and c-Jun protein in cytoplasm and nucleus. HepG2 cells were divided into Control group, PDTC group (an inhibitor of the NF-κB signaling pathway), and cSN50.1 group to investigate the influence of the NF-κB signaling pathway on the effect of cSN50.1 on hepatocellular carcinoma cells, and RT-PCR and Western Blot were used to measure the expression of CXCL5, TNF-α, and NF-κB protein in cytoplasm and nucleus. A one-way analysis of variance was used for comparison between multiple groups, and the SNK-q test was used for further comparison between two groups. ResultsCompared with the 0 μmol/L group, the 10 μmol/L group had no significant changes in proliferation, migration, invasion, and colony formation abilities (P >0.05); the 30 μmol/L group had no significant change in proliferation ability (P>0.05), but with significant reductions in migration, invasion, and colony formation abilities (P<0.05); the 50 μmol/L group had significant reductions in proliferation, migration, invasion, and colony formation abilities (all P<0.01); the 70 μmol/L and 90 μmol/L groups had a significant reduction in cell proliferation ability (P<0.01), but with a cell survival rate of below 50%. Compared with the Control group, the SP600125, PDTC, and cSN50.1 groups had significant reductions in the mRNA and protein expression levels of CXCL5 and TNF-α (all P<0.05). Compared with the Control group, the SP600125 group, the PDTC group, and the cSN50.1 group had a significant reduction in nuclear protein of c-Jun and NF-κB expression (P<0.05); the SP600125 group and the PDTC group had a significant reduction in cytoplasmic protein of c-Jun and NF-κB expression (P<0.05); the cSN50.1 group had a significant increase in cytoplasmic protein of c-Jun and NF-κB expression (P<0.05). ConclusionThis study shows that cSN50.1 can inhibit the malignant behavior of hepatocellular carcinoma cells and reduce the expression of CXCL5 and TNF-α by inhibiting the nuclear import of c-Jun and NF-κB in hepatocellular carcinoma cells.

14.
Journal of Traditional Chinese Medicine ; (12): 2224-2231, 2023.
Article in Chinese | WPRIM | ID: wpr-997289

ABSTRACT

ObjectiveTo explore the mechanism of Zhuangyao Tongluo Formula(壮腰通络方,ZTF) in delaying intervertebral disc degeneration. MethodsM1 macrophages were induced from THP-1 cells using LPS, IFN-γ and PMA. The induced M1 macrophages were then co-cultured with nucleus pulposus cells in a transwell system. Fetal bovine serum was used as the control serum, and the effects of different concentrations (5%, 10%, 15%, 20%) of serum from rats treated with ZTF on the activity of M1 macrophages and nucleus pulposus cells were analyzed using MTT assay. Experiment 1 was established, including the nucleus pulposus cell control group, M1 macrophage control group, nucleus pulposus cell + ZTF group, nucleus pulposus cell + TNF control group, nucleus pulposus cell + TNF + ZTF group, co-culture group, and co-culture + ZTF group. The levels of IL-1β, and IL-18 in the culture supernatant were detected using ELISA. The mRNA expression of IL-1β and IL-18 in nucleus pulposus cells was detected using qPCR. Additionally, the expression of GSDMD protein in nucleus pulposus cells was detected using cell immunofluorescence. In experiment 2, co-culture groups were constructed using TNF-α overexpression (OE) or empty vector (EV) plasmids, including co-culture group, TNF-EV + co-culture group, TNF-EV co-culture group + ZTF, co-culture + ZTF group, TNF-OE co-culture group + ZTF, and TNF-OE + co-culture group. The mRNA and protein expression of TNF-α in M1 cells in each group were detected using qPCR and WB. ResultsThe ZTF with 10% serum was selected for subsequent experiments. The results of experiment 1 showed that compared to the control group of nucleus pulposus cells, there was no statistically significant difference in the levels of IL-1β, IL-18, mRNA, and GSDMD expression in the nucleus pulposus cells + ZTF group (P>0.05). However, the TNF-α + co-culture group showed a significant increase in IL-1β, IL-18 levels, mRNA, and GSDMD expression (P<0.01). When compared to the co-culture group, the ZTF+ co-culture group showed a significant decrease in IL-1β, IL-18 levels, mRNA, and GSDMD expression (P<0.01). The results of experiment 2 showed that there was no statistically significant difference in TNF-α mRNA and protein expression between the empty vector plasmids + co-culture group and the co-culture group (P>0.05). Compared to the empty vector + co-culture group, the expression of TNF-α mRNA and protein was significantly reduced in the empty vector co-culture + ZTF group (P<0.01). Compared to the co-culture group and the empty vector + co-culture group, the expression of TNF-α mRNA and protein was significantly reduced in the co-culture + ZTF group (P<0.01). Compared to the co-culture + ZTF group, the expression of TNF-α mRNA and protein significantly increased in the overexpression vector co-culture + ZTF group (P<0.01). Compared to the overexpression vector co-culture + ZTF group, the expression of TNF-α mRNA and protein significantly increased in the overexpression vector co-culture group (P<0.01). ConclusionZTF serum can inhibit the TNF-α-induced apoptosis of nucleus pulposus cells and delay lumbar disc degeneration by reducing the expression of TNF-α in M1 macrophages.

15.
Malaysian Journal of Medicine and Health Sciences ; : 61-68, 2023.
Article in English | WPRIM | ID: wpr-996690

ABSTRACT

@#Introduction: Studies show that adolescents are more reward sensitive compared to other age groups. The nucleus accumbens (NAcc) has been identified as a key brain area involved in reward through its connectivity to other reward-related brain areas. Our study aimed to characterise the white matter structural connectivity of nucleus accumbens with brain areas that are most often associated with reward in female adolescents. Methods: Fifteen healthy female Malay adolescents were recruited and underwent diffusion-weighted brain scanning. Two behaviour scales were also given to verify typical reward responsiveness. Then, probabilistic tractography and NAcc segmentation were performed on the data using FMRIB Software Library (FSL). Probabilistic tractography was performed to determine the relative connection probability of nucleus accumbens (NAcc) to areas shown to be associated with reward, namely amygdala, anterior cingulate cortex (ACC), medial orbitofrontal cortex (mOFC), hippocampus, ventrolateral prefrontal cortex (vlPFC) and dorsolateral prefrontal cortex (dlPFC). Connectivity-based segmentation of NAcc was performed to determine the spatial distribution of its connectivity with the target brain areas according to the highest connection probability. Results: The highest relative connection probability was found between NAcc to mOFC, while the NAcc parcellation showed the widest distribution of connection to mOFC compared to the other five targets on both sides of the brain. Conclusion: Our findings demonstrated the strongest structural connectivity and widest distribution between NAcc and mOFC compared with other brain areas related to reward. This study’s findings could be used as baseline to compare with people with atypical reward circuit problems.

16.
Chinese Journal of Neurology ; (12): 88-93, 2023.
Article in Chinese | WPRIM | ID: wpr-994804

ABSTRACT

As the major part of mesencephalic locomotion region, pedunculopontine tegmental nucleus (PPN) participates in motor initiation, rhythmic and speed regulation. In addition, PPN is regarded as a novel deep brain stimulation target for patients with Parkinson′s disease due to its dramatic effect on the gait disturbance and postural instability. However, PPN also has an important role in muscle tone control and dystonia. This review is aimed at summarizing the involvement of PPN in dystonia, providing fundamental for targeting PPN for treatment of dystonia in the future.

17.
Chinese Acupuncture & Moxibustion ; (12): 669-678, 2023.
Article in Chinese | WPRIM | ID: wpr-980777

ABSTRACT

OBJECTIVE@#To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI.@*METHODS@#A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 μL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR.@*RESULTS@#Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01).@*CONCLUSION@#EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , Cerebellar Nuclei , Electroacupuncture , Myocardial Reperfusion Injury/therapy , Receptors, GABA-A/genetics , RNA, Messenger
18.
Neuroscience Bulletin ; (6): 41-56, 2023.
Article in English | WPRIM | ID: wpr-971537

ABSTRACT

Adverse experiences in early life have long-lasting negative impacts on behavior and the brain in adulthood, one of which is sleep disturbance. As the corticotropin-releasing hormone (CRH)-corticotropin-releasing hormone receptor 1 (CRHR1) system and nucleus accumbens (NAc) play important roles in both stress responses and sleep-wake regulation, in this study we investigated whether the NAc CRH-CRHR1 system mediates early-life stress-induced abnormalities in sleep-wake behavior in adult mice. Using the limited nesting and bedding material paradigm from postnatal days 2 to 9, we found that early-life stress disrupted sleep-wake behaviors during adulthood, including increased wakefulness and decreased non-rapid eye movement (NREM) sleep time during the dark period and increased rapid eye movement (REM) sleep time during the light period. The stress-induced sleep disturbances were accompanied by dendritic atrophy in the NAc and both were largely reversed by daily systemic administration of the CRHR1 antagonist antalarmin during stress exposure. Importantly, Crh overexpression in the NAc reproduced the effects of early-life stress on sleep-wake behavior and NAc morphology, whereas NAc Crhr1 knockdown reversed these effects (including increased wakefulness and reduced NREM sleep in the dark period and NAc dendritic atrophy). Together, our findings demonstrate the negative influence of early-life stress on sleep architecture and the structural plasticity of the NAc, and highlight the critical role of the NAc CRH-CRHR1 system in modulating these negative outcomes evoked by early-life stress.


Subject(s)
Animals , Mice , Corticotropin-Releasing Hormone/metabolism , Nucleus Accumbens/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Sleep , Sleep Wake Disorders , Stress, Psychological/complications
19.
Chinese Journal of Biotechnology ; (12): 472-487, 2023.
Article in Chinese | WPRIM | ID: wpr-970386

ABSTRACT

Flow cytometry is a multi-parameter, rapid and efficient method for qualitative analysis and quantitative determination of various fluorescently labeled particles in liquid flow. Flow cytometry has been applied in multiple disciplines such as immunology, virology, molecular biology, cancer biology and infectious disease monitoring. However, the application of flow cytometry in plant research is hampered due to the special composition and structure of plant tissues and cells, such as cell walls and secondary metabolites. In this paper, the development, composition and classification of flow cytometry were introduced. Subsequently, the application, research progress and application limitations of flow cytometry in plant field were discussed. At last, the development trend of flow cytometry in plant research was prospected, which provides new perspectives for broadening the potential application scope of plant flow cytometry.


Subject(s)
Flow Cytometry/methods , Plants , Fluorescent Dyes
20.
Acta Pharmaceutica Sinica B ; (6): 2269-2280, 2023.
Article in English | WPRIM | ID: wpr-982843

ABSTRACT

Inflammation, abnormal cholesterol metabolism, and macrophage infiltration are involved in the destruction of the extracellular matrix of the nucleus pulposus (NP), culminating in intervertebral disc degeneration (IDD). Whether nimbolide (Nim), a natural extract, can alleviate IDD is unclear. In this study, we demonstrated that Nim promotes cholesterol efflux and inhibits the activation of the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by activating sirtuin 1 (SIRT1) in nucleus pulposus cells (NPCs) during inflammation. Thus, Nim balanced matrix anabolism and catabolism of NPCs. However, the inhibition of SIRT1 significantly attenuated the effects of Nim. We also found that Nim promoted the expression of SIRT1 in RAW 264.7, which enhanced the proportion of M2 macrophages by facilitating cholesterol homeostasis reprogramming and impeded M1-like macrophages polarization by blocking the activation of inflammatory signaling. Based on these results, Nim can improve the microenvironment and facilitate matrix metabolism equilibrium in NPCs. Furthermore, in vivo treatment with Nim delayed IDD progression by boosting SIRT1 expression, modulating macrophage polarization and preserving the extracellular matrix. In conclusion, Nim may represent a novel therapeutic strategy for treating IDD.

SELECTION OF CITATIONS
SEARCH DETAIL