Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Year range
1.
Chongqing Medicine ; (36): 1009-1011,1015, 2018.
Article in Chinese | WPRIM | ID: wpr-691897

ABSTRACT

Objective To explore the molecular mechanisms of the effect of eluting stent drug rapamycin for injuring human coronary artery endothelial cells(HCAECs)by using the proteomics method.Methods HCAECs were treated with rapamycin,and the differentially expressed proteins were analyzed by two dimension fluorescence differential gel electrophoresis(2D-DIGE).The changed proteins were identified by MALDI-ToF-ToF.Results At least 85 differential protein spots were found,including 49 up-regulated and 36 down-regulated protein spots.Twenty-six proteins were identified by MALDI-ToF-ToF,including the endoplasmic reticulum protein,mitochondrial protein,molecular chaperones,ubiquitin system related protein,structural protein and oxidative stress related proteins,etc.Conclusion The changes of specific proteins of HCAECs injury induced by rapamycin are investigated by the proteomic method.

2.
Braz. j. med. biol. res ; 45(3): 273-283, Mar. 2012. ilus, tab
Article in English | LILACS | ID: lil-618048

ABSTRACT

Chronic atrophic gastritis (CAG) is a very common gastritis and one of the major precursor lesions of gastric cancer, one of the most common cancers worldwide. The molecular mechanism underlying CAG is unclear, but its elucidation is essential for the prevention and early detection of gastric cancer and appropriate intervention. A combination of two-dimensional gel electrophoresis and mass spectrometry was used in the present study to analyze the differentially expressed proteins. Samples from 21 patients (9 females and 12 males; mean age: 61.8 years) were used. We identified 18 differentially expressed proteins in CAG compared with matched normal mucosa. Eight proteins were up-regulated and 10 down-regulated in CAG when compared with the same amounts of proteins in individually matched normal gastric mucosa. Two novel proteins, proteasome activator subunit 1 (PSME1), which was down-regulated in CAG, and ribosomal protein S12 (RPS12), which was up-regulated in CAG, were further investigated. Their expression was validated by Western blot and RT-PCR in 15 CAG samples matched with normal mucosa. The expression level of RPS12 was significantly higher in CAG than in matched normal gastric mucosa (P < 0.05). In contrast, the expression level of PSME1 in CAG was significantly lower than in matched normal gastric mucosa (P < 0.05). This study clearly demonstrated that there are some changes in protein expression between CAG and normal mucosa. In these changes, down-regulation of PSME1 and up-regulation of RPS12 could be involved in the development of CAG. Thus, the differentially expressed proteins might play important roles in CAG as functional molecules.


Subject(s)
Female , Humans , Male , Middle Aged , Gastric Mucosa/chemistry , Gastritis, Atrophic/metabolism , Muscle Proteins/genetics , Proteomics , Proteasome Endopeptidase Complex/genetics , Ribosomal Proteins/metabolism , Blotting, Western , Chronic Disease , Down-Regulation , Electrophoresis, Gel, Two-Dimensional , Gastric Mucosa/pathology , Gastritis, Atrophic/genetics , Helicobacter pylori , Mass Spectrometry , Muscle Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Proteins/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL