ABSTRACT
Objective:To analyze the clinical characteristics of patients undergoing extracorporeal cardiopulmonary resuscitation (ECPR), and to explore the risk factors leading to poor prognosis.Methods:The clinical data of 95 patients with ECPR admitted to the First Affiliated Hospital of Zhengzhou University from January 2020 to May 2023 were retrospectively analyzed. According to the survival status at the time of discharge, the patients were divided into the survival group and death group. The difference of clinical data between the two groups was compared to explore the risk factors related to death and poor prognosis. Risk factors associated with death were identified by Binary Logistic regression analysis. Results:A total of 95 patients with ECPR were included in this study, 62 (65.3%) died and 33 (34.7%) survived at discharge. Patients in the death group had longer low blood flow time [40 (30, 52.5) min vs. 30 (24.5, 40) min ] and total cardiac arrest time[40 (30, 52.5) min vs. 30(24.5, 40) min], shorter total hospital stay [3 (2, 7.25) d vs. 19 (13.5, 31) d] and extracorporeal membrane oxygenation (ECMO) assisted time [26.5 (17, 50) h vs. 62 (44, 80.5) h], and more IHCA patients (56.5% vs. 33.3%) and less had spontaneous rhythm recovery before ECMO (37.1% vs. 84.8%). Initial lactate value [(14.008 ± 5.188) mmol/L vs.(11.23 ± 4.718) mmol/L], APACHEⅡ score [(30.10 ± 7.45) vs. (25.88 ± 7.68)] and SOFA score [12 (10.75, 16) vs. 10 (9.5, 13)] were higher ( P< 0.05). Conclusions:No spontaneous rhythm recovery before ECMO, high initial lactic acid and high SOFA score are independent risk factors for poor prognosis in ECPR patients.
ABSTRACT
Viral central nervous system infection (VCNSI), with high disability and mortality rates, is a serious threat for the health of children. Given the low pathogen load in cerebrospinal fluid and limitations of conventional virus detection technology, the early pathogenic diagnosis methods are less than ideal. With the development of multiplex polymerase chain reaction (PCR), digital PCR, point-of-care testing detection of nucleic acid, and metagenome high-throughput sequencing, the clinical use of viral diagnostic technologies has become more prevalent. In this comment, the current status and future directions of laboratory diagnosis of VCNSI in children are discussed.