Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Yao Xue Xue Bao ; (12): 2419-2425, 2021.
Article in Chinese | WPRIM | ID: wpr-886966

ABSTRACT

italic>α-Glucosidase inhibitors play an important role in the treatment of diabetes. This study established a high-resolution bioassay profiling platform for rapidly screening α-glucosidase inhibitors in natural product extracts. Five α-glucosidase inhibitors were identified from Malus hupehensis, namely, 3-hydroxyphloridzin, quercetin-3-O-β-D-glucopyranoside, phloridzin, avicularin and quercitrin. The establishment and successful application of this platform provides a powerful tool for the efficient discovery of anti-diabetic active ingredients in complex systems.

2.
Yao Xue Xue Bao ; (12): 1225-1233, 2019.
Article in Chinese | WPRIM | ID: wpr-780225

ABSTRACT

Sangzhi alkaloids (SZ-A) are derived from traditional Chinese medicine Ramulus Mori, serving well as an innovative antidiabetic drug, due to α-glucosidase inhibition. To evaluate the potency of glucosidase inhibitory effect of SZ-A, the enzyme-based screening platforms, including sucrase, maltase and amylase were established, and IC50 was calculated. The effects of SZ-A on postprandial blood glucose at a single dose, oral sucrose, starch and glucose loading were determined in normal ICR mice and alloxan-induced hyperglycemic mice. To confirm the anti-diabetic effects of SZ-A on glucose and lipid metabolism after long-term administration, the postprandial and fasting blood glucose, serum insulin, urinary glucose levels, glycosylated serum proteins and blood lipid levels were determined in high-fat fed C57 obese mice (pre-diabetic HFC57 mice) and diabetic rats induced by streptozotocin (STZ). The Experimental Animal Welfare Ethics Committee of the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College approved all of the protocols for this research. We found that SZ-A exhibited a significant inhibitory effect on the sucrase and maltase. SZ-A showed no effect on amylase. In normal ICR mice and alloxan-induced hyperglycemic mice, SZ-A at a single dose significantly delayed and reduced the peak of blood glucose after sucrose or starch loading, but showed no effect on the increase of blood glucose after glucose loading. In STZ diabetic rats, SZ-A significantly reduced the postprandial or fasting blood glucose levels, glycosylated serum proteins and urinary glucose. SZ-A also reduced serum triglyceride (TG) and cholesterol (TC) levels after 3 weeks of treatment. SZ-A ameliorated the postprandial blood glucose or the fasting blood glucose elevation, and reduced the incidence of hyperglycemia in HFC57 mice. SZ-A decreased the basal insulin level, improved insulin sensitivity, and ameliorated glucose intolerance in pre-diabetic HFC57 mice. Our results indicated that SZ-A had a novel inhibitory activity on α-glucosidase, especially on disaccharidases. SZ-A at a single dose significantly reduced the peak of blood glucose elevation and delayed the increase of blood glucose in normal and diabetic mice after disaccharide and polysaccharide loading. Long-term SZ-A treatment improved glucose and lipid metabolic profiles by delaying carbohydrate absorption from the intestine and reduced the postprandial blood glucose levels in both pre-diabetic and diabetic animal models. Therefore, SZ-A application may display a beneficial role in preventing the development and complications of diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL