Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in Korean | WPRIM | ID: wpr-60657

ABSTRACT

INTRODUCTION: The purpose of this study was to evaluate the possibility of the acellular dermal matrix (ADM) as a barrier membrane for bone regeneration, and to evaluate the osteogenic effect of ADM as a carrier system for rhBMP-2 in the rat calvarial defect model. MATERIALS AND METHODS: An 8-mm, calvarial, critical-size osteotomy defect was created in each of 60 male Spraque-Dawley rats(weight 250~300g). Three groups of 20 animals, each received either rhBMP-2(0.025mg/ml) in an ADM carrier, ADM only, or negative surgical control. And each group was divided i nto 2- and 8 -weeks healing intervals. The groups were evaluated by histologic and histomorphometric parameters(10 animals/group/healing intervals). Data were expressed as means+/-standard deviations(m+/-SD). Comparisons between experimental and control groups were made using two-way ANOVA and post hoc t-test. Comparisons between 2 weeks and 8 weeks were made using paired t-test. The level of statistical difference was defined as P< 0.05. RESULTS: The ADM group and rhBMP-2/ADM group results in enhanced local bone formation in the rat calvarial defect at both 2 and 8 weeks. The amount of defect closure and new bone formation were significantly greater in the rhBMP-2/ADM group relative to ADM group(P<0.05). At 8 weeks, the majority of ADM in the defect was contracted, and integrated with surrounding host tissues. In addition, host cell infiltration and neovascularization of the ADM in the absence of an inflammatory response were observed, and the newly formed bone around ADM showed a continuous remodeling and consolidation. CONCLUSION: The results of the present study indicated that ADM may be used as a barrier membrane for bone regeneration and that may be employed as a delivery system for BMPs.


Subject(s)
Animals , Humans , Male , Rats , Acellular Dermis , Bone Regeneration , Membranes , Osteogenesis , Osteotomy
2.
Article in Korean | WPRIM | ID: wpr-24280

ABSTRACT

Bone morphogenetic proteins have been shown to possess significant osteoinSductive potential, but in order to take advantage of this effect for tissue engineering, carrier systems are essential. Successful carrier systems must enable vascular and cellular invasion, allowing BMP to act as a differentiation factor. The carrier should be reproducible, non-immunogenic, moldable, and space-providing, to define the contours of the resulting bone. The purpose of this study was to review available literature, in comparing various carriers of BMP on rat calvarial defect model. The following conclusions were deduced. 1. Bone regeneration of ACS/BMP, beta-TCP/BMP, FFSS/BMP, FFSS/beta-TCP/BMP, MBCP/BMP group were significantly greater than the control groups. 2. Bone density in the ACS/BMP group was greater than that in beta-TCP, FFSS, FFSS/beta-TCP carrier group. 3. Bone regeneration in FFSS/BMP group was less than in ACS/BMP, beta-TCP/BMP, MBCP/BMP group. However, New bone area of FFSS/beta-TCP/BMP carrier group were more greater than that of FFSS/BMP group. ACS, beta-TCP, FFSS, FFSS/beta-TCP, MBCP were used for carrier of BMP. However, an ideal carrier which was reproducible, non-immunogenic, moldable, and space-providing did not exist. Therefore, further investigation are required in developing a new carrier system.


Subject(s)
Animals , Rats , Bone Density , Bone Morphogenetic Proteins , Bone Regeneration , Tissue Engineering
3.
Article in Korean | WPRIM | ID: wpr-23150

ABSTRACT

The ultimate objective of periodontal treatment is to get rid of an on-going periodontal disease and further regenerate the supporting tissue, which is already destroyed, functionally. Currently, the bone grafting operation using various kinds of bone grafting materials and the operation for induced regeneration of periodontal tissue using the blocking membrane are performed for regeneration of the destroyed periodontal tissue. However, there are respective limitations Galenical preparations, which are used for regeneration of periodontal tissue, has less risk of rejective reaction or toxicity that may be incidental to degradation and their effect is sustainable. Thus, in case they are applicable to a clinic, they can be used economically. Chitosan has such compatibility, biological actions including antibacterial activity, acceleration of wound treatment, etc., and excellent mechanical characteristics, which has recently aroused more interest in it. Also, it has been reported that it promotes osteogenesis directly or indirectly by functioning as a matrix to promote migration and differentiation of a specific precussor cell (for example, osteoblast) and further inhibiting the function of such a cell as fibroblast to prevent osteogenesis. In this study, the pure chitosan solution, which was obtained by purifying chitosan, was used. However, since this chitosan is of a liquiform, it is difficult to sustain it in a defective region. It is, therefore, essential to use a carrier for delivering chitosan to, and sustaining it gradually in the defective region. In the calvarial defect model of the Sprague-Dawley rat, it is relatively easy to maintain a space. Therefore, in this study, the chitosan solution with which ACS was wetted was grafted onto the defective region. For an experimental model, a calvarial defect of rat was selected, and a critical size of the defective region was a circular defect with a diameter of 8 mm. A group in which no treatment was conducted for the calvarial defect was set as a negative control group. Another group in which treatment was conducted with ACS only was set as a positive control group (ACS group). And another group in which treatment was conducted by grafting the pure chitosan solution onto the defective region through ACS which was wetted with the chitosan solution was set as an experimental group (Chitosan/ACS group). Chitosan was applied to the Sprague-Dawley rat's calvarial bone by applying ACS which was wetted with the chitosan solution, and each Sprague-Dawley rat was sacrificed respectively 2 weeks and 8 weeks after the operation for such application. Then, the treatment results were compared and observed histologically and histometrically. Thereby, the following conclusions were obtained. 1. In the experimental group, a pattern was shown that from 2 weeks after the operation, vascular proliferation proceeded and osteogenesis proceeded through osteoblast infiltration, and at 8 week after the operation, ACS was almost absorbed, the amount of osteogenesis was increased and many osteoid tissue layers were observed. 2. At 2 weeks after the operation, each amount of osteogenesis appeared to be 8.70.8 %, 13.62.3 % and 4.80.7 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be higher in the Experimental group and the positive control group than in the negative control group, but there was no significant difference statistically (p<0.01). 3. At 8 weeks after the operation, each amount of osteogenesis appeared to be 62.26.1 %, 17.42.5 % and 8.21.4 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be substantially higher in the experimental group than in the positive control group and the negative control group, and there was a significant difference statistically (p<0.01). As a result of conducting the experiment, when ACS was used as a carrier for chitosan, chitosan showed effective osteogenesis in the perforated defective region of the Sprague-Dawley rat's calvarial bone.


Subject(s)
Rats , Animals
SELECTION OF CITATIONS
SEARCH DETAIL