Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.300
Filter
1.
Autops. Case Rep ; 14: e2024479, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1533847

ABSTRACT

ABSTRACT Papillary renal cell carcinoma (PRCC) is the second most common renal cell carcinoma (RCC), accounting for 10-15% of cases. Mucinous tubular and spindle cell carcinoma (MTSCC), on the other hand, accounts for only 1% of renal tumors and has a more favorable prognosis compared to PRCC. We report a 75-year-old female with a left upper pole solid renal mass displaying features of both papillary renal cell carcinoma (PRCC) and mucinous tubular and spindle cell carcinoma (MTSC). In this case, a shaggy luminal surface, multiple papillations, and psammoma bodies, absence of E-cadherin expression, and strong CD10 expression favored PRCC. Both immunohistochemistry and genomic analysis are critical to diagnose and differentiate tumors that may have overlapping features accurately.

2.
Chinese Journal of Traumatology ; (6): 42-52, 2024.
Article in English | WPRIM | ID: wpr-1009505

ABSTRACT

PURPOSE@#Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation.@*METHODS@#C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference.@*RESULTS@#Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.@*CONCLUSIONS@#Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.


Subject(s)
Humans , Animals , Mannitol/pharmacology , Brain Edema , Neural Stem Cells/metabolism , MAP Kinase Signaling System , p38 Mitogen-Activated Protein Kinases/pharmacology , Cell Proliferation
3.
Chinese journal of integrative medicine ; (12): 230-242, 2024.
Article in English | WPRIM | ID: wpr-1010324

ABSTRACT

OBJECTIVE@#To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.@*METHODS@#A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.@*RESULTS@#FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).@*CONCLUSION@#FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Subject(s)
Mice , Animals , Mitogen-Activated Protein Kinase 14/metabolism , Wolfiporia , Lipopolysaccharides/pharmacology , Sepsis/complications , Signal Transduction , Inflammation/drug therapy , Oxygen Radioisotopes
4.
China Pharmacy ; (12): 1016-1022, 2024.
Article in Chinese | WPRIM | ID: wpr-1016729

ABSTRACT

Esophageal cancer (EC) is a common malignant tumor of the digestive system with an extremely poor prognosis. MicroRNA (miRNA) is an important regulator in tumor occurrence and development, and can participate in malignant biological behaviors such as tumor cell proliferation, invasion, metastasis and apoptosis. Traditional Chinese medicine has the characteristics of accurate curative effects, wide range of effects, and few side effects. The review uses miRNA as the entry point to systematically elaborate on the mechanism of traditional Chinese medicine-mediated miRNA intervening in EC. The results showed that active ingredients of traditional Chinese medicine (including curcumin, Tussilago farfara polysaccharides, Atractylodes macrocephala polysaccharides and ophiopogonin B) and Dougen guanshitong oral liquid could up-regulate the expressions of miRNAs such as miRNA-532-3p (miR-532-3p), miR-551b-3p, miR-99a, miR-34a, miR-199a-3p and miR-377; and the active ingredients/parts of traditional Chinese medicine (including chrysin and Actinidia arguta extract), and Chinese herbal formulas (including Chaihu shugan san combined with Xuanfu daizhe decoction and Modified jupi zhuru decoction) could down-regulate the expressions of miRNAs such as miR-199a-3p, miR-451 and miR-21, which could regulate the expressions of signaling pathways (phosphoinositide 3-kinase/protein kinase B, etc.) or their downstream protein(zinc-finger and homeobox protein 1, etc.) or enzymes(thymidine kinase-1, etc.), inhibit the proliferation, invasion and metastasis of EC cells and induce apoptosis, thereby ultimately achieving the purpose of preventing the disease from aggravating.

5.
China Pharmacy ; (12): 955-960, 2024.
Article in Chinese | WPRIM | ID: wpr-1016718

ABSTRACT

OBJECTIVE To explore the effects of alfentanil (ALF) on myocardial fibrosis in rats with acute myocardial infarction (AMI) by regulating sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate (S1P) signaling pathway. METHODS Male SD rats were collected to construct AMI model by the ligation of anterior descending branch of left coronary artery. The successfully modeled rats were randomly divided into AMI model group (Model group), ALF low-dose group (ALF-L group, 0.25 mg/kg ALF), ALF high-dose group (ALF-H group, 0.5 mg/kg ALF), high dose of ALF+SphK1 activator group (ALF-H+K6PC-5 group, 0.5 mg/kg ALF+1 μg/g K6PC-5). At the same time, a sham operation group (Sham group) was set up to perform only chest opening/closing operations without ligating the anterior descending branch of left coronary artery, with 15 rats in each group. Rats in each drug group were intraperitoneally injected with the corresponding drug solution, once a day, for 4 consecutive weeks. Twelve hours after the last medication, cardiac function indicators [left ventricular systolic pressure (LVSP), left ventricular ejection fraction (LVEF), left ventricular systolic diameter (LVSD), left ventricular fractional shortening (LVFS)] of rats were detected in each group; the condition of myocardial infarction, pathological changes in myocardial tissue, and degree of fibrosis were observed; serum levels of brain natriuretic peptide (BNP) and cardiac troponin Ⅰ (cTnⅠ) in rats were detected. The protein expressions of collagen Ⅰ , collagen Ⅲ , matrix metalloproteinase-2 (MMP-2), SphK1 and S1P were alsodetected in the myocardial tissue of rats. RESULTS Compared with the Sham group, the arrangement of myocardial cells in the Model group was disordered, with a large number of inflammatory cells infiltrating. The levels of LVSP, LVFS and LVEF in the Model group were significantly reduced (P<0.05); LVSD level, myocardial infarction area, collagen volume fraction, serum levels of BNP and cTnⅠ, the protein expressions of collagen Ⅰ, collagen Ⅲ, MMP-2, SphK1 and S1P in myocardial tissue were significantly increased or enlarged (P<0.05). Compared with the Model group, the pathological changes and degree of fibrosis in the myocardial tissue of rats in each dose group of ALF were improved or relieved, while the quantitative indicators of rats in the ALF-H group were significantly improved and significantly better than those in ALF-L group (P<0.05). K6PC-5 could significantly reverse the improvement effect of high-dose ALF on the above quantitative indicators in rats (P<0.05). CONCLUSIONS ALF can reduce myocardial fibrosis and improve cardiac function in AMI rats, and the effect may be related to the inhibition of the SphK1/S1P signaling pathway.

6.
China Pharmacy ; (12): 942-947, 2024.
Article in Chinese | WPRIM | ID: wpr-1016716

ABSTRACT

OBJECTIVE To study the ameliorative effect and potential mechanism of curcumin on diabetes model rats with depression based on cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway. METHODS The diabetes model rat with depression was established by high fat and high sugar diet+intraperitoneal injection of streptozotocin+chronic unpredictable stress-induced depression. The successfully modeled rats were randomly divided into model group, positive control group (0.18 g/kg metformin and 1.8 mg/kg fluoxetine, gavage), curcumin low-dose and high-dose groups (30, 60 mg/kg, gavage) and curcumin high-dose+CREB inhibitor group [60 mg/kg curcumin (gavage)+5 mg/kg CREB inhibitor 666-15 (intraperitoneal injection)], with 12 rats in each group. Another 12 healthy rats were selected as the normal group. Each group was given a corresponding intervention for 4 weeks, the fasting blood glucose level of rats was detected, and the depression of rats was assessed. The levels of corticosterone (CORT) and inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin- 1β (IL-1β), IL-6] in serum, and the levels of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in hippocampal tissue were determined. The pathological changes and neuronal apoptosis were observed in the hippocampal tissue of rats in each group; the expression levels of CREB, BDNF mRNA and protein in hippocampal tissue were detected. RESULTS Compared with the normal group, the hippocampal tissue of rats in the model group was severely damaged, and neurons were scattered, while the fasting blood glucose, the forced swimming immobility time, the tail suspension immobility time, serum levels of CORT, TNF-α, IL-1β and IL-6, and neuron apoptosis indexes were all increased or prolonged significantly (P<0.05). The levels of NE and 5-HT, the number of surviving neurons, and the expression levels of CREB and BDNF mRNA and protein in hippocampal tissue were decreased significantly (P<0.05). Compared with the 的model group, the damage to hippocampal tissue was relieved in the positive control group and curcumin groups, while the above indexes were improved significantly (P<0.05). The improvement effect of curcumin high-dose group was better than that of curcumin low-dose group (P<0.05). CREB inhibitor could significantly reverse the ameliorative effect of high-dose curcumin on the model rats (P<0.05). CONCLUSIONS Curcumin can improve the depression of diabetes model rats with depression, and relieve neuronal damage and inflammatory response, the mechanism of which may be associated with activating CREB/BDNF signaling pathway.

7.
China Pharmacy ; (12): 912-917, 2024.
Article in Chinese | WPRIM | ID: wpr-1016711

ABSTRACT

OBJECTIVE To investigate the effect and mechanism of gracillin from Reineckia carnea on autophagy in non- small cell lung cancer A549 cells. METHODS Using A549 cells as subjects, the effects of different concentrations of gracillin (0.25, 0.5, 1, 2, 4 μmol/L) on the proliferation of cells were detected by CCK-8 after being treated for different time (12, 24, 48 h). Compared with the control group without medication, the effect of gracillin (2 μmol/L) on the formation of autophagosomes in cells was observed by transmission electron microscope after 24 h of exposure. The aggregation of GFP-LC3 on autophagosome membrane was detected by GFP-LC3 plasmid transfection after being treated with gracillin (0.25, 0.5, 1, 2 μmol/L) for 24 h. Quantitative real-time PCR and Western blot assay were used to detect the mRNA and protein expressions of family with sequence similarity 102 member A(FAM102A), the expressions of autophagy-related proteins [p62, Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B)], and the expressions of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway-related proteins in A549 cells after being treated with gracillin (0.25, 0.5, 1 and 2 μmol/L) for 24 h. RESULTS Gracillin significantly inhibited the proliferation of A549 cells in a concentration- and time-dependent manner. The IC50 was 2.55 μmol/L at 24 h. After 24 h of gracillin treatment, autophagosomes with bilayer membrane structure were found in the cell cytoplasm, and GFP-LC3 green fluorescent spots on autophagosome membrane were obvious, representing an increasing trend as drug concentration. Compared with the control group, mRNA and protein expressions of FAM102A (0.5, 1, 2 μmol/L groups), protein expression of Beclin-1 (1, 2 μmol/L groups) and LC3B-Ⅱ/LC3B-Ⅰ ratio (2 μmol/L group) were significantly increased in different concentrations of gracillin groups, while the protein expression of p62 (1, 2 μmol/L groups), and the protein phosphorylations of Akt (1, 2 μmol/L groups) and PI3K (2 μmol/L group) were all decreased significantly (P<0.05 or P<0.01). CONCLUSIONS Gracillin can promote excessive autophagy in A549 cells by up-regulating mRNA and protein expressions of FAM102A and inhibiting PI3K/Akt signaling pathway, thus inhibiting cell proliferation.

8.
Journal of Clinical Hepatology ; (12): 822-827, 2024.
Article in Chinese | WPRIM | ID: wpr-1016531

ABSTRACT

The Hedgehog (Hh) signaling pathway plays an important role in the development and progression of hepatocellular carcinoma and its tumor microenvironment, and abnormal activation of Hh signal can accelerate the growth of tumor. The crosstalk between the Hh signaling pathway and TME is closely associated with tumor growth and the formation of inhibitory tumor microenvironment. Evidence shows that inhibition of Hh signal plays an important role in inhibiting the growth of hepatocellular carcinoma. This article reviews the current research status of the role, mechanism, and potential therapeutic significance of abnormal activation of Hh signal in hepatocellular carcinoma and its tumor microenvironment, so as to provide new ideas for the treatment of hepatocellular carcinoma.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 236-245, 2024.
Article in Chinese | WPRIM | ID: wpr-1016484

ABSTRACT

Cancer, one of the deadliest diseases caused by cells escaping homeostasis, abnormal proliferation, and abnormal differentiation, is fast becoming one of the most burdensome diseases of this century. With decades of human research and cognitive changes in cancer, cancer treatment is also developing rapidly, but there is still a lack of effective treatment and countermeasures. Especially, the search for safe, efficient, and non-toxic drugs has become a long-term goal in the field of cancer. Saponins extracted and separated from traditional Chinese medicine can improve cancer through various pathways and have almost no toxic side effects. Therefore, the research on the anti-cancer effect of saponins is heating up. It is found that saponins play anti-tumor roles by inhibiting proliferation, metastasis, and angiogenesis of cancer cells, promoting apoptosis of cancer cells, inducing autophagy of tumor cells, and regulating miRNA expression and immune functions. Chinese herbal medicine saponins can regulate secretory glycoprotein /β-catenin (Wnt/β-catenin), adenylate activated protein kinase (AMPK), nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), Janus kinase/activator of signal transduction and transcription 3 (JAK/ STAT3), hypoxia-inducible factor-1α (HIF-1α), Toll-like receptor (TLR), and other related signaling pathways to get involved in the proliferation, metastasis, angiogenesis, apoptosis, autophagy, and other processes of cancer cells, thus interfering with the progression of cancer. Therefore, the focus of this review is to update the discovery and evaluation of Chinese herbal medicine saponins with anti-cancer properties, clarify their mechanism of action, including the progress of related signaling pathways, and deepen the understanding of the anti-cancer function of Chinese herbal medicine saponins, so as to provide a new perspective and direction for the prevention and treatment of tumors by traditional Chinese medicine and better promote the development and utilization of resources.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 225-235, 2024.
Article in Chinese | WPRIM | ID: wpr-1016483

ABSTRACT

Parkinson's disease (PD) is a common neurological degenerative disease in the middle-aged and elderly, characterized by pathological changes of progressive degeneration of dopaminergic neurons in the substantia nigra and Lewy body formation, with high prevalence and long course of disease. The drug is mainly used to treat PD in western medicine, and the early curative effect is remarkable. However, with the progression of the disease and the long-term use of the drug, the efficacy will be significantly reduced, or there may be sports complications, and the long-term efficacy is not good. As a traditional medical system, traditional Chinese medicine has a unique understanding of PD. Traditional Chinese medicine plays an important role in the treatment of PD, which is natural, mild, safe, and effective, and it can cooperate with western medicine to enhance its efficacy and reduce the adverse reactions of western medicine. The pathogenesis of PD is complex, involving multiple levels such as mitochondrial dysfunction and apoptosis. Neuroinflammation is also involved in the progressive degeneration of dopaminergic neurons in PD. The Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway is a classic inflammatory pathway, and its expression changes play an important role in the occurrence and development of inflammatory response in the body. In recent years, the research on this pathway in TCM is increasing. This paper summarized the literature of traditional Chinese and western medicine in the past 10 years and reviewed the relevant mechanism of TCM regulation of TLR4/NF-κB pathway in the treatment of PD from the aspects of TCM monomer, compound, and other TCM therapies, so as to provide some references for the search for new targets of drug therapy and gene therapy and the in-depth study of TCM prevention and treatment of PD.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 62-69, 2024.
Article in Chinese | WPRIM | ID: wpr-1016463

ABSTRACT

ObjectiveTo explore the possible mechanism of Osteoking (OK) on postmenopausal osteoporosis (PMOP). MethodForty adult female mice were randomly divided into a sham operation (Sham) group, osteoporosis model (OVX) group, estradiol intervention (E2) group, and OK group, with 10 mice in each group. The modeling was completed by conventional back double incision ovariectomy, and the corresponding drugs were given one week later. After 12 weeks, the body mass and uterine index of mice were measured, and the pathological changes of bone tissue and the number of osteoclasts (OCs) were determined by hematoxylin-eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining, respectively. Bone mineral density (BMD), trabecular number (Tb.N), trabecular separation (Tb.Sp), and bone volume fraction (BV/TV) were measured by microcomputed tomography (Micro-CT). The maximum load of the femur was detected by a three-point bending test. The contents of tumor necrosis factor-α (TNF-α) and bone resorption marker C-terminal telopeptide of type Ⅰ collagen (CTX-1) were measured by enzyme linked immunosorbent assay (ELISA). The protein expression levels of nuclear factor-kappa B p65 (NF-κB p65), phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65), nuclear factor kappa B inhibitor alpha (IκBα), phosphorylated nuclear factor kappa B alpha (p-IκBα), nuclear factor of activated T cells 1 (NFATc1), and proto-oncogene (c-Fos) were detected by Western blot. The mRNA expressions of OCs-related specific genes matrix metalloproteinase-9 (MMP-9), NFATc1, TRAP, cathepsin K (CTSK), and c-Fos were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the Sham group, the uterine index decreased significantly in the OVX group, and the body mass (BMI) increased significantly. The structure of bone trabeculae was completely damaged, and the number of OCs increased. BMD, Tb.N, BV/TV, and maximum load decreased, while Tb.Sp was up-regulated. The levels of TNF-α and CTX-1 in serum were up-regulated. The protein expressions of c-Fos, p-NF-κB p65/NF-κB p65, NFATc1, and p-IκBα/IκBα were increased. The mRNA expressions of NFATc1, c-Fos, CTSK, TRAP, and MMP-9 were up-regulated (P<0.05, P<0.01). Compared with the OVX group, the body mass of the OK and E2 groups decreased, and the uterine index increased. The bone trabeculae increased, and the number of OCs decreased. BMD, Tb.N, BV/TV, and maximum load increased, while Tb.Sp decreased. The levels of TNF-α and CTX-1 in serum were decreased. The protein expressions of c-Fos, p-NF-κB p65/NF-κB p65, NFATc1, and p-IκBα/IκBα were decreased, and the mRNA expressions of NFATc1, c-Fos, CTSK, TRAP, and MMP-9 were decreased (P<0.05, P<0.01). ConclusionOK can inhibit the NF-κB/NFATc1 signaling pathway and reduce bone mass loss by reducing the level of inflammatory injury factors in PMOP mice, which is one of the mechanisms for treating PMOP.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 45-53, 2024.
Article in Chinese | WPRIM | ID: wpr-1016461

ABSTRACT

ObjectiveTo explore the molecular mechanism of Sanhuang Xiexintang (SHXXT) in protecting stress gastric ulcer (SGU) in rats through network pharmacology, molecular docking, and animal experiments. MethodThe active ingredients and corresponding targets in SHXXT were collected and screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Information Database (TCMID), Bioinformation Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM), and Swiss Target Prediction database. SGU-related targets were screened from the Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), GeneCards database, and PharmGKB database. Herbal-ingredient-target (H-C-T) network was constructed by using Cytoscape 3.9.1 software. Protein-protein interaction (PPI) of drug and disease intersection targets was analyzed by using the Protein Interaction Platform (STRING) database. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted through the Database for Annotation Visualization and Integrated Discovery (DAVID). The active ingredients and key targets were validated using AutodockVina 1.2.2 molecular docking software, and the experimental results were further validated through animal experiments. ResultThe 55 active ingredients were screened, and 255 potential target genes for SHXXT treatment of SGU were predicted. The PPI analysis showed that protein kinase B (Akt), phosphatase and tensin homolog deleted on chromosome ten (PTEN), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2) are the core targets of SHXXT for protecting SGU. GO and KEGG analyses showed that SHXXT may affect the development of SGU by regulating various biological processes such as the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and inflammatory processes. The molecular docking results showed that both the active ingredients and key targets had good binding ability. Animal experiments showed that compared with the blank group, the ulcer index (UI) of the model group was significantly increased (P<0.01), and the serum levels of TNF-α and IL-1β significantly increased (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly down-regulated (P<0.05). The phosphorylation levels of PI3K, Akt, and nuclear factor kappa-B (NF-κB) were significantly up-regulated (P<0.05). Compared with the model group, the UI of the treatment group was significantly reduced (P<0.01), and the serum levels of TNF-α and IL-1β were significantly reduced (P<0.01). The phosphorylation level of PTEN in gastric mucosal tissue was significantly up-regulated (P<0.01), and the phosphorylation levels of PI3K, Akt, and NF-κB were significantly downregulated (P<0.01). ConclusionThe application of network pharmacology prediction, molecular docking simulation, and animal experimental validation confirms that SHXXT regulates the PI3K/Akt/NF-κB signaling pathway to regulate the inflammatory response of rats and thus protects the gastric mucosa of SGU rats.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 20-28, 2024.
Article in Chinese | WPRIM | ID: wpr-1016458

ABSTRACT

ObjectiveTo study the effects of Epimedii Folium polysaccharides on mice with exercise-induced fatigue and explore its possible mechanism of action. MethodICR male mice screened by swimming training were randomly divided into a control group, model group, vitamin C group, and low, medium, and high dose groups of Epimedii Folium polysaccharides, with eight mice in each group. The exercise-induced fatigue model was established by weight-bearing swimming training in each group except for the control group. After two weeks of weight-bearing swimming, the Epimedii Folium polysaccharide groups were given 100, 200, 400 mg∙kg-1 of Epimedii Folium polysaccharides by gavage, and the vitamin C group was given 200 mg∙kg-1 of vitamin C by gavage. The control group and the model group were given equal amounts of saline for 14 d. At the end of the experimental period, the body mass of the mice in each group and the time of last swimming due to exhaustion were recorded. Serum urea nitrogen (BUN), lactic acid (LA), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidation (GSH-Px), myoglycogen (MG) in skeletal muscle, hepatic glycogen (HG) in the liver were detected by kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in muscle tissue. Western blot was used to detect the protein expression of p38 mitogen-activated protein kinase (p38 MAPK), phosphorylation (p)-p38 MAPK, extracellular signal-regulated kinase1/2 (ERK1/2), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), and interleukin-6 (IL-6) in muscle tissue. The immunofluorescence (IF) method was used to detect the expression of tumor necrosis factor-α (TNF-α) in skeletal muscle tissue of mice in each group. ResultCompared with the control group, the body mass of mice in the model group decreased, and the time of last swimming due to exhaustion decreased (P<0.01). In addition, there were significantly higher serum levels of the fatigue metabolites LA, LDH, BUN, and lipid peroxidation product MDA (P<0.01) and decreased levels of MG, HG, SOD, and GSH-Px (P<0.01). The protein expressions of p-p38 MAPK, ERK1/2, p-NF-κB, IL-1β, IL-6, and TNF-α in skeletal muscle tissue were significantly higher than those of the control group (P<0.01). Compared with the model group, the body mass and time of last swimming due to exhaustion of the mice in the low, medium, and high dose groups of Epimedii Folium polysaccharides and the vitamin C group were increased (P<0.05, P<0.01), and the contents of LA, LDH, BUN, and MDA were significantly decreased (P<0.05, P<0.01). The levels of MG, HG, SOD, and GSH-Px increased (P<0.05, P<0.01), and the protein expression levels of p-p38 MAPK, ERK, p-NF-κB, IL-1β, IL-6, and TNF-α in skeletal muscle tissue decreased (P<0.05, P<0.01). ConclusionEpimedii Folium polysaccharides can play a role in alleviating exercise-induced fatigue by inhibiting the p38 MARK/NF-κB signaling pathway, thereby reducing the accumulation of metabolites, improving the activity of antioxidant enzymes, increasing the glycogen content of the body, and reducing inflammation in skeletal muscle.

14.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 261-267, 2024.
Article in Chinese | WPRIM | ID: wpr-1016447

ABSTRACT

ObjectiveTo investigate the effects of morin treatment on bone metabolism and bone mass in aged rats, and to clarify the possible mechanism. MethodsTen young female Sprague-Dawley rats (3 months old) and 20 old female Sprague-Dawley rats (24 months old) were randomly divided into three groups: Control group (CON, 10 young rats); Model group (MOD, 10 young rats); 10 old rats and SangHuangSu Group (SSS, 10 old rats). During the experiment, the SSS group received intraperitoneal injection of morin (10 mg / kg) daily. The treatment lasted for 12 weeks. After treatment, Micro-CT, HE stained sections, serological tests and Western blot were used to observe the treatment effect and possible mechanism. ResultsAfter 12 weeks of treatment, compared with MOD group, the number and density of bone trabeculae in SSS group were significantly improved. The BMD, Conn. D, Tb. N, Tb.Th and Tb.Sp of the left femur in the SSS group were significantly better than those in the MOD group(P <0.05). After 12 weeks of treatment, the levels of CTX-1, osteocalcin, TRACP-5b and PINP in SSS group were significantly lower than those in MOD group(P <0.05). Compared with the MOD group, the ERK1/2-p38 signal pathway was significantly inhibited and the levels of ERK1/2 and p38 were significantly decreased in the SSS group(P <0.05). ConclusionMorin pigment mediates the protective effect on the bones of aged rats by inhibiting the ERK1/2-p38 signaling pathway and reducing bone turnover.

15.
Acta Anatomica Sinica ; (6): 55-61, 2024.
Article in Chinese | WPRIM | ID: wpr-1015142

ABSTRACT

Objective To investigate the relationship between nuclear factor(NF)-κB signaling pathway and gender differences in alcoholic liver fibrosis. Methods C57BL/6 N mice at 7-8 weeks of age were randomly divided into: male normal group, male model group, female normal group and female model group of 20 mice each. The normal group was fed with control liquid diet for 8 weeks, and the model group was fed with alcoholic liquid diet for 8 weeks combined with 31.5% ethanol gavage (5g/kg twice a week) to establish an alcoholic liver fibrosis model. The mice were executed at the end of 8 weekends, and the alanine aminotransferase (ALT), aspartate aminotransferase (AST) activity, estradiol (E

16.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 121-129, 2024.
Article in Chinese | WPRIM | ID: wpr-1014558

ABSTRACT

AIM: To study the effect and mechanism of Di'ao Xinxuekang (DXXK) on insulin resistance in nonalcoholic steatohepatitis (NASH) mice. METHODS: C57BL/6J mice were randomly divided into normal group and model group. After 16 weeks of high-fat diet, the model group was randomly divided into model group and Pioglitazone group (6.0 mg · kg

17.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 260-269, 2024.
Article in Chinese | WPRIM | ID: wpr-1014536

ABSTRACT

AIM: To explore the intervention effect of Dahuangtang pellets (DHT) on diabetic nephropathy (DN) based on the AMP-activated protein kinase/mammalian target of rapamycin/unc-51-like kinase 1 (AMPK/mTOR/ULK1) signaling pathway. METHODS: Eight mice were randomly assigned to the model group, the dapagliflozin group, and the DHT (high, medium, and low dosage) group out of a total of 40 C57BL/KSJ-db/db (hereafter referred to as db/db) mice; another 10 C57BL/KSJ-db/dm mice were used as the normal group, saline was provided to the normal and model groups, and the mice in the treatment group received the appropriate medications. The medications were given for 10 consecutive weeks, once per day, to the mice in the treatment group. At weeks 0, 4, 8, and 10 of administration, fasting blood glucose (FBG) was assessed by drawing blood at a predetermined time from the tail vein; Urine samples were taken at 0, 5, and 10 weeks after treatment to evaluate the levels of albumin and creatinine, and the urinary albumin-creatinine ratio (ACR) was computed. After 10 weeks, mice in each group were assayed for 24 h total urine protein, serum creatinine (Scr), urea nitrogen (BUN) levels; Western blotting analysis was conducted to detect the expression of p-AMPK, p-mTOR, and p-ULK1, as well as the expression of autophagy related proteins homolog of yeast Atg6 (Beclin-1), autophagy-related proteins microtubule-associated protein 1 light chain 3 (LC3), P62 in renal tissue; Immunohistochemistry was used to measure the expression of podocyte lacunar membrane proteins (Nephrin, Podocin) in renal tissues; The pathological morphology of renal tissue was observed by light microscopy and transmission electron microscopy. RESULTS: Compared with the model group, FBG, ACR, and 24 h total urine protein were reduced in the dapagliflozin group and DHT groups of mice, and there was no statistically significant difference in Scr and BUN; In renal tissues, there is increased expression of p-AMPK and p-ULK1, decreased expression of p-mTOR, increased expression of LC3II / LC3I and Beclin-1, and decreased expression of P62 (P<0.01, P< 0.05); differentially upregulated in glomeruli are the podocyte lacunar membrane proteins Nephrin and Podocin (P<0.01, P<0.05); renal pathologic damage was reduced to varying degrees; transmission electron microscopy showed an increase in the number of autophagic vesicles and autophagic lysosomes. CONCLUSION: DHT can delay the development of DN by regulating the AMPK / mTOR / ULK1 signaling pathway, enhancing podocyte autophagy, and protecting glomeruli.

18.
Chinese Pharmacological Bulletin ; (12): 557-564, 2024.
Article in Chinese | WPRIM | ID: wpr-1013654

ABSTRACT

To explore the mechanism of spleen- were obtained for the treatment of acute-on-chronic livstrengthening and moisture-nourishing liver prescription er failure, and 244 intersecting target genes and 7 core (JPLSYGF) in the treatment of acute-on-chronic liver target genes were screened. Molecular docking showed failure using network pharmacology and the molecular that the core target genes AKT1, SRC, VEGFA, docking. Methods Relying on TCMSP and Gene- STAT3 , EGFR, MAPK3 , HRAS had good affinity with Cards and other databases, the relevant targets of JPL- quercetin, the main active component in the JPLSYGF in the treatment of acute-on-chronic liver failure SYGF, and had strong binding activity. In addition, in were obtained. String and Cytoscape were used to con- vivo tests verified that the JPLSYGF could reduce the struct PPI networks of targets, core targets were expression of HRAS, EGFR, STAT3 , SRC, and VEGscreened out, and DAVID was used for GO function FA, to delay the progression of acute-on-chronic liver annotation and KEGG pathway enrichment analysis. failure. Conclusions JPLSYGF may act on core tar- The main active ingredients of the traditional Chinese gets such as HRAS, EGFR, STAT3, SRC, VEGFA medicine compound formula for JPLSYGF were select- and so on, to achieve the effect of treating acute-oned with a bioavailability OB value of =Э 30% and a chronic liver failure. drug-like DL

19.
Chinese Pharmacological Bulletin ; (12): 514-520, 2024.
Article in Chinese | WPRIM | ID: wpr-1013644

ABSTRACT

Aim To investigate the therapeutic effect of the MW-9 on ulcerative colitis(UC)and reveal the underlying mechanism, so as to provide a scientific guidance for the MW-9 treatment of UC. Methods The model of lipopolysaccharide(LPS)-stimulated RAW264.7 macrophage cells was established. The effect of MW-9 on RAW264.7 cells viability was detected by MTT assay. The levels of nitric oxide(NO)in RAW264.7 macrophages were measured by Griess assay. Cell supernatants and serum levels of inflammatory cytokines containing IL-6, TNF-α and IL-1β were determined by ELISA kits. Dextran sulfate sodium(DSS)-induced UC model in mice was established and body weight of mice in each group was measured. The histopathological damage degree of colonic tissue was assessed by HE staining. The protein expression of p-p38, p-ERK1/2 and p-JNK was detected by Western blot. Results MW-9 intervention significantly inhibited NO release in RAW264.7 macrophages with IC50 of 20.47 mg·L-1 and decreased the overproduction of inflammatory factors IL-6, IL-1β and TNF-α(P<0.05). MW-9 had no cytotoxicity at the concentrations below 6 mg·L-1. After MW-9 treatment, mouse body weight was gradually reduced, and the serum IL-6, IL-1β and TNF-α levels were significantly down-regulated. Compared with the model group, MW-9 significantly decreased the expression of p-p38 and p-ERK1/2 protein. Conclusions MW-9 has significant anti-inflammatory activities both in vitro and in vivo, and its underlying mechanism for the treatment of UC may be associated with the inhibition of MAPK signaling pathway.

20.
Chinese Pharmacological Bulletin ; (12): 490-498, 2024.
Article in Chinese | WPRIM | ID: wpr-1013641

ABSTRACT

Aim To explore the effects of Lycium berry seed oil on Nrf2/ARE pathway and oxidative damage in testis of subacute aging rats. Methods Fifty out of 60 male SD rats, aged 8 weeks, were subcutaneously injected with 125 mg • kg"D-galactosidase in the neck for 8 weeks to establish a subacute senescent rat model. The presence of senescent cells was observed using P-galactosidase ((3-gal), while testicular morphology was examined using HE staining. Serum levels of testosterone (testosterone, T), follicle-stimulating hormone ( follicle stimulating hormone, FSH ) , luteinizing hormone ( luteinizing hormone, LH ) , superoxide dis-mutase ( superoxide dismutase, SOD ) , glutathione ( glutathione, GSH) and malondialdehyde ( malondial-dehyde, MDA) were measured through ELISA, and the expressions of factors related to aging, oxidative damage, and the Nrf2/ARE pathway were assessed via immunohistochemical analysis and Western blotting. Results After successfully identifying the model, the morphology of the testis was improved and the intervention of Lycium seed oil led to a down-regulation in the expression of [3-gal and -yH2AX. The serum levels of SOD, GSH, T, and FSH increased while MDA and LH decreased (P 0. 05) . Additionally, there was an up-regulated expression of Nrf2, GCLC, NQOl, and SOD2 proteins in testicular tissue ( P 0. 05 ) and nuclear expression of Nrf2 in sertoli cells. Conclusion Lycium barbarum seed oil may reduce oxidative damage in testes of subacute senescent rats by activating the Nrf2/ARE signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL