Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
Neuroscience Bulletin ; (6): 79-89, 2024.
Article in English | WPRIM | ID: wpr-1010684

ABSTRACT

Sensory conflict impacts postural control, yet its effect on cortico-muscular interaction remains underexplored. We aimed to investigate sensory conflict's influence on the cortico-muscular network and postural stability. We used a rotating platform and virtual reality to present subjects with congruent and incongruent sensory input, recorded EEG (electroencephalogram) and EMG (electromyogram) data, and constructed a directed connectivity network. The results suggest that, compared to sensory congruence, during sensory conflict: (1) connectivity among the sensorimotor, visual, and posterior parietal cortex generally decreases, (2) cortical control over the muscles is weakened, (3) feedback from muscles to the cortex is strengthened, and (4) the range of body sway increases and its complexity decreases. These results underline the intricate effects of sensory conflict on cortico-muscular networks. During the sensory conflict, the brain adaptively decreases the integration of conflicting information. Without this integrated information, cortical control over muscles may be lessened, whereas the muscle feedback may be enhanced in compensation.


Subject(s)
Humans , Muscle, Skeletal , Electromyography/methods , Electroencephalography/methods , Brain , Brain Mapping
2.
Neuroscience Bulletin ; (6): 50-64, 2024.
Article in English | WPRIM | ID: wpr-1010668

ABSTRACT

The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.


Subject(s)
Child , Humans , Cognitive Training , Magnetic Resonance Imaging , Brain , Brain Mapping , Motor Cortex
3.
Neuroscience Bulletin ; (6): 157-170, 2024.
Article in English | WPRIM | ID: wpr-1010660

ABSTRACT

In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.


Subject(s)
Adult , Humans , Brain Mapping , Pain , Empathy , Racism , Gyrus Cinguli/physiology , Magnetic Resonance Imaging , Brain/physiology
4.
Acta Physiologica Sinica ; (6): 521-528, 2023.
Article in Chinese | WPRIM | ID: wpr-1007767

ABSTRACT

The aim of the present study was to explore the specific pattern of brain deactivation elicited by painful stimuli, in contrast with that elicited by tactile stimuli. Functional magnetic resonance imaging (fMRI) data were collected from 62 healthy subjects under painful and tactile stimuli with varying intensities. The brain deactivations under different conditions were identified using the general linear model. Two-way analysis of variance (ANOVA) was performed to test whether there was a significant interaction between perceived stimulus intensity (factor 1: high intensity, low intensity) and stimulus modality (factor 2: pain, touch) on the brain deactivations. The results showed that there were significant interactions between stimulus intensity and stimulus modality on the deactivations of left medial superior frontal gyrus, left middle occipital gyrus, left superior frontal gyrus and right middle occipital gyrus (P < 0.05, Cluster-level FWE). The deactivations induced by painful stimuli with low perceived intensity (β = -3.38 ± 0.52) were significantly stronger than those induced by painful stimuli with high perceived intensity (β = -1.22 ± 0.54) (P < 0.001), whereas the differences between the deactivations induced by tactile stimuli with different perceived intensities were not statistically significant. In addition, there were no significant differences between the deactivations elicited by painful and tactile stimuli with the same stimulus intensities. These results suggest that there is a specific relationship between the deactivations induced by painful stimuli in multiple brain regions (such as the left medial superior frontal gyrus) and the stimulus intensity, providing evidence for a deeper understanding of the brain mechanisms underlying pain perception.


Subject(s)
Humans , Touch/physiology , Physical Stimulation/methods , Pain , Brain/physiology , Magnetic Resonance Imaging/methods , Brain Mapping
5.
Neuroscience Bulletin ; (6): 1840-1858, 2023.
Article in English | WPRIM | ID: wpr-1010665

ABSTRACT

The mammalian brain is a highly complex network that consists of millions to billions of densely-interconnected neurons. Precise dissection of neural circuits at the mesoscopic level can provide important structural information for understanding the brain. Optical approaches can achieve submicron lateral resolution and achieve "optical sectioning" by a variety of means, which has the natural advantage of allowing the observation of neural circuits at the mesoscopic level. Automated whole-brain optical imaging methods based on tissue clearing or histological sectioning surpass the limitation of optical imaging depth in biological tissues and can provide delicate structural information in a large volume of tissues. Combined with various fluorescent labeling techniques, whole-brain optical imaging methods have shown great potential in the brain-wide quantitative profiling of cells, circuits, and blood vessels. In this review, we summarize the principles and implementations of various whole-brain optical imaging methods and provide some concepts regarding their future development.


Subject(s)
Animals , Brain/physiology , Brain Mapping/methods , Neurons/physiology , Optical Imaging/methods , Mammals
6.
Journal of Southern Medical University ; (12): 1833-1838, 2023.
Article in Chinese | WPRIM | ID: wpr-1010603

ABSTRACT

OBJECTIVE@#To investigate iron accumulation level over the whole brain and explore the possible neuromechanism of medication-overuse headache (MOH) using quantitative susceptibility mapping (QSM).@*METHODS@#Thirty-seven MOH patients and 27 normal control subjects were enrolled in the study for examinations with both a multiecho gradient echo magnetic resonance (MR) sequence and brain high resolution structural imaging. A voxel-based analysis was performed to detect the brain regions with altered iron deposition, and the quantitative susceptibility mapping values of the positive brain regions were extracted. Correlation analysis was performed between the susceptibility values and the clinical variables of the patients.@*RESULTS@#In patients with MOH, increased susceptibility values were found mainly in the bilateral substantia nigra (SN) (MNI coordinate: 8, -18, -14; -6, -16, -14) as compared with the normal control subjects (P < 0.001), but these alterations in iron deposition were not significantly correlated with the clinical variables of the patients (P > 0.05). The susceptibility value in the left SN had an area under curve (AUC) of 0.734, and at the cut-off value of 0.077, its diagnostic sensitivity was 72.97% and its specificity was 70.37% for distinguishing MOH from normal controls; The susceptibility value in the right SN had an AUC of 0.699 with a diagnostic sensitivity of 72.97% and a specificity of 62.96% at the cut-off value of 0.084.@*CONCLUSION@#Increased iron deposition occurs in the bilateral SN of MOH patients, which provides a new insight into the mechanism of mesocorticolimbic dopamine system dysfunction in MOH. QSM technique can be used as a non-invasive means for quantitative analysis of brain iron deposition in migraine neuroimaging.


Subject(s)
Humans , Brain , Substantia Nigra , Magnetic Resonance Imaging/methods , Headache Disorders, Secondary , Headache , Iron , Brain Mapping/methods
7.
Journal of Biomedical Engineering ; (6): 272-279, 2023.
Article in Chinese | WPRIM | ID: wpr-981539

ABSTRACT

Accurate source localization of the epileptogenic zone (EZ) is the primary condition of surgical removal of EZ. The traditional localization results based on three-dimensional ball model or standard head model may cause errors. This study intended to localize the EZ by using the patient-specific head model and multi-dipole algorithms using spikes during sleep. Then the current density distribution on the cortex was computed and used to construct the phase transfer entropy functional connectivity network between different brain areas to obtain the localization of EZ. The experiment result showed that our improved methods could reach the accuracy of 89.27% and the number of implanted electrodes could be reduced by (19.34 ± 7.15)%. This work can not only improve the accuracy of EZ localization, but also reduce the additional injury and potential risk caused by preoperative examination and surgical operation, and provide a more intuitive and effective reference for neurosurgeons to make surgical plans.


Subject(s)
Humans , Scalp , Brain Mapping/methods , Epilepsy/diagnosis , Electroencephalography/methods , Brain
8.
Acta Physiologica Sinica ; (6): 465-474, 2023.
Article in Chinese | WPRIM | ID: wpr-981021

ABSTRACT

Primary dysmenorrhea (PDM), cyclic menstrual pain in the absence of pelvic anomalies, is characterized by acute and chronic gynecological pain disorders in childbearing age women. PDM strongly affects the quality of life of patients and leads to economic losses. PDM generally do not receive radical treatment and often develop into other chronic pain disorders later in life. The clinical treatment status of PDM, the epidemiology of PDM and chronic pain comorbidities, and the abnormal physiological and psychological characteristics of patients with PDM suggest that PDM not only is related to the inflammation around the uterus, but also may be related to the abnormal pain processing and regulation function of patients' central system. Therefore, exploring the brain neural mechanism of PDM is indispensable and important to understand the pathological mechanism of PDM, and is also a hotspot of brain science research in recent years, which will bring new inspiration to explore the target of PDM intervention. Based on the progress of the neural mechanism of PDM, this paper systematically summarizes the evidence from neuroimaging and animal model studies.


Subject(s)
Animals , Humans , Female , Dysmenorrhea , Brain Mapping , Chronic Pain , Quality of Life , Neuroimaging , Models, Animal
9.
Neuroscience Bulletin ; (6): 328-342, 2023.
Article in English | WPRIM | ID: wpr-971568

ABSTRACT

From birth to adulthood, we often align our behaviors, attitudes, and opinions with a majority, a phenomenon known as social conformity. A seminal framework has proposed that conformity behaviors are mainly driven by three fundamental motives: a desire to gain more information to be accurate, to obtain social approval from others, and to maintain a favorable self-concept. Despite extensive interest in neuroimaging investigation of social conformity, the relationship between brain systems and these fundamental motivations has yet to be established. Here, we reviewed brain imaging findings of social conformity with a componential framework, aiming to reveal the neuropsychological substrates underlying different conformity motivations. First, information-seeking engages the evaluation of social information, information integration, and modification of task-related activity, corresponding to brain networks implicated in reward, cognitive control, and tasks at hand. Second, social acceptance involves the anticipation of social acceptance or rejection and mental state attribution, mediated by networks of reward, punishment, and mentalizing. Third, self-enhancement entails the excessive representation of positive self-related information and suppression of negative self-related information, ingroup favoritism and/or outgroup derogation, and elaborated mentalizing processes to the ingroup, supported by brain systems of reward, punishment, and mentalizing. Therefore, recent brain imaging studies have provided important insights into the fundamental motivations of social conformity in terms of component processes and brain mechanisms.


Subject(s)
Humans , Social Conformity , Motivation , Brain , Social Behavior , Brain Mapping
10.
Journal of Zhejiang University. Science. B ; (12): 458-462, 2023.
Article in English | WPRIM | ID: wpr-982386

ABSTRACT

The difference between sleep and wakefulness is critical for human health. Sleep takes up one third of our lives and remains one of the most mysterious conditions; it plays an important role in memory consolidation and health restoration. Distinct neural behaviors take place under awake and asleep conditions, according to neuroimaging studies. While disordered transitions between wakefulness and sleep accompany brain disease, further investigation of their specific characteristics is required. In this study, the difference is objectively quantified by means of network controllability. We propose a new pipeline using a public intracranial stereo-electroencephalography (stereo-EEG) dataset to unravel differences in the two conditions in terms of system neuroscience. Because intracranial stereo-EEG records neural oscillations covering large-scale cerebral areas, it offers the highest temporal resolution for recording neural behaviors. After EEG preprocessing, the EEG signals are band-passed into sub-slow (0.1‍-‍1 Hz), delta (1‍-‍4 Hz), theta (4‍-‍8 Hz), alpha (8‍-‍13 Hz), beta (13‍-‍30 Hz), and gamma (30‍-‍45 Hz) band oscillations. Then, dynamic functional connectivity is extracted from time-windowed EEG neural oscillations through phase-locking value (PLV) and non-overlapping sliding time windows. Next, average and modal network controllability are implemented on these time-varying brain networks. Based on this preliminary study, it appears that significant differences exist in the dorsolateral frontal-parietal network (FPN), salience network (SN), and default-mode network (DMN). The combination of network controllability and dynamic functional networks offers new insight for characterizing distinctions between awake and asleep stages in the brain. In other words, network controllability captures the underlying brain dynamics under both awake and asleep conditions.


Subject(s)
Humans , Wakefulness , Electroencephalography/methods , Brain Mapping/methods , Brain
11.
Asian Journal of Andrology ; (6): 699-703, 2023.
Article in English | WPRIM | ID: wpr-1009818

ABSTRACT

Recent research has highlighted structural and functional abnormalities in the cerebral cortex of patients with premature ejaculation (PE). These anomalies could play a pivotal role in the physiological mechanisms underlying PE. This study leveraged functional magnetic resonance imaging (fMRI), a noninvasive technique, to explore these neural mechanisms. We conducted resting-state fMRI scans on 36 PE patients and 22 healthy controls (HC), and collected data on Premature Ejaculation Diagnostic Tool (PEDT) scores and intravaginal ejaculation latency time (IELT). Employing a surface-based regional homogeneity (ReHo) approach, we analyzed local neural synchronous spontaneous activity, diverging from previous studies that utilized a volume-based ReHo method. Areas with significant ReHo differences between PE and HC groups underwent surface-based functional connectivity (FC) analysis. Significant discrepancies in ReHo and FC across the cortical surface were observed in the PE cohort. Notably, PE patients exhibited decreased ReHo in the left triangular inferior frontal gyrus and enhanced ReHo in the right middle frontal gyrus. The latter showed heightened connectivity with the left lingual gyrus and the right orbital superior frontal gyrus. Furthermore, a correlation between ReHo and FC values with PEDT scores and IELT was found in the PE group. Our findings, derived from surface-based fMRI data, underscore specific brain regions linked to the neurobiological underpinnings of PE.


Subject(s)
Male , Humans , Premature Ejaculation , Brain Mapping/methods , Brain , Cerebral Cortex , Magnetic Resonance Imaging/methods
12.
Journal of Biomedical Engineering ; (6): 1165-1172, 2022.
Article in Chinese | WPRIM | ID: wpr-970655

ABSTRACT

Drug-refractory epilepsy (DRE) may be treated by surgical intervention. Intracranial EEG has been widely used to localize the epileptogenic zone (EZ). Most studies of epileptic network focus on the features of EZ nodes, such as centrality and degrees. It is difficult to apply those features to the treatment of individual patients. In this study, we proposed a spatial neighbor expansion approach for EZ localization based on a neural computational model and epileptic network reconstruction. The virtual resection method was also used to validate the effectiveness of our approach. The electrocorticography (ECoG) data from 11 patients with DRE were analyzed in this study. Both interictal data and surgical resection regions were used. The results showed that the rate of consistency between the localized regions and the surgical resections in patients with good outcomes was higher than that in patients with poor outcomes. The average deviation distance of the localized region for patients with good outcomes and poor outcomes were 15 mm and 36 mm, respectively. Outcome prediction showed that the patients with poor outcomes could be improved when the brain regions localized by the proposed approach were treated. This study provides a quantitative analysis tool for patient-specific measures for potential surgical treatment of epilepsy.


Subject(s)
Humans , Epilepsy/surgery , Brain/surgery , Electrocorticography/methods , Drug Resistant Epilepsy/surgery , Brain Mapping/methods , Electroencephalography/methods
13.
Journal of Biomedical Engineering ; (6): 237-247, 2022.
Article in Chinese | WPRIM | ID: wpr-928219

ABSTRACT

Brain functional network changes over time along with the process of brain development, disease, and aging. However, most of the available measurements for evaluation of the difference (or similarity) between the individual brain functional networks are for charactering static networks, which do not work with the dynamic characteristics of the brain networks that typically involve a long-span and large-scale evolution over the time. The current study proposes an index for measuring the similarity of dynamic brain networks, named as dynamic network similarity (DNS). It measures the similarity by combining the "evolutional" and "structural" properties of the dynamic network. Four sets of simulated dynamic networks with different evolutional and structural properties (varying amplitude of changes, trend of changes, distribution of connectivity strength, range of connectivity strength) were generated to validate the performance of DNS. In addition, real world imaging datasets, acquired from 13 stroke patients who were treated by transcranial direct current stimulation (tDCS), were used to further validate the proposed method and compared with the traditional similarity measurements that were developed for static network similarity. The results showed that DNS was significantly correlated with the varying amplitude of changes, trend of changes, distribution of connectivity strength and range of connectivity strength of the dynamic networks. DNS was able to appropriately measure the significant similarity of the dynamics of network changes over the time for the patients before and after the tDCS treatments. However, the traditional methods failed, which showed significantly differences between the data before and after the tDCS treatments. The experiment results demonstrate that DNS may robustly measure the similarity of evolutional and structural properties of dynamic networks. The new method appears to be superior to the traditional methods in that the new one is capable of assessing the temporal similarity of dynamic functional imaging data.


Subject(s)
Humans , Aging/physiology , Brain/physiology , Brain Mapping , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Transcranial Direct Current Stimulation/methods
14.
Journal of Biomedical Engineering ; (6): 47-55, 2022.
Article in Chinese | WPRIM | ID: wpr-928198

ABSTRACT

Traditional depression research based on electroencephalogram (EEG) regards electrodes as isolated nodes and ignores the correlation between them. So it is difficult to discover abnormal brain topology alters in patients with depression. To resolve this problem, this paper proposes a framework for depression recognition based on brain function network (BFN). To avoid the volume conductor effect, the phase lag index is used to construct BFN. BFN indexes closely related to the characteristics of "small world" and specific brain regions of minimum spanning tree were selected based on the information complementarity of weighted and binary BFN and then potential biomarkers of depression recognition are found based on the progressive index analysis strategy. The resting state EEG data of 48 subjects was used to verify this scheme. The results showed that the synchronization between groups was significantly changed in the left temporal, right parietal occipital and right frontal, the shortest path length and clustering coefficient of weighted BFN, the leaf scores of left temporal and right frontal and the diameter of right parietal occipital of binary BFN were correlated with patient health questionnaire 9-items (PHQ-9), and the highest recognition rate was 94.11%. In addition, the study found that compared with healthy controls, the information processing ability of patients with depression reduced significantly. The results of this study provide a new idea for the construction and analysis of BFN and a new method for exploring the potential markers of depression recognition.


Subject(s)
Humans , Brain , Brain Mapping , Depression/diagnosis , Electroencephalography , Recognition, Psychology
15.
Acta Physiologica Sinica ; (6): 294-300, 2022.
Article in Chinese | WPRIM | ID: wpr-927605

ABSTRACT

How the brain perceives objects and classifies perceived objects is one of the important goals of visual cognitive neuroscience. Previous research has shown that when we see objects, the brain's ventral visual pathway recognizes and classifies them, leading to different ways of interacting with them. In this paper, we summarize the latest research progress of the ventral visual pathway related to the visual classification of objects. From the perspective of the neural representation of objects and its underlying mechanisms in the visual cortex, we summarize the current research status of the two important organizational dimensions of object animacy and real-world size, provide new insights, and point out the direction of further research.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging , Pattern Recognition, Visual , Photic Stimulation , Visual Cortex , Visual Pathways
16.
Rev. colomb. anestesiol ; 49(2): e201, Apr.-June 2021. tab, graf
Article in English | LILACS, COLNAL | ID: biblio-1251498

ABSTRACT

Abstract Introduction The analysis of the electrical activity of the brain using scalp electrodes with electroencephalography (EEG) could reveal the depth of anesthesia of a patient during surgery. However, conventional EEG equipment, due to its price and size, are not a practical option for the operating room and the commercial units used in surgery do not provide access to the electrical activity. The availability of low-cost portable technologies could provide for further research on the brain activity under general anesthesia and facilitate our quest for new markers of depth of anesthesia. Objective To assess the capabilities of a portable EEG technology to capture brain rhythms associated with the state of consciousness and the general anesthesia status of surgical patients anesthetized with propofol. Methods Observational, cross-sectional study that reviewed 10 EEG recordings captured using OpenBCI portable low-cost technology, in female patients undergoing general anesthesia with propofol. The signal from the frontal electrodes was analyzed with spectral analysis and the results were compared against the reports in the literature. Results The signal captured with frontal electrodes, particularly α rhythm, enabled the distinction between resting with eyes closed and with eyes opened in a conscious state, and sustained anesthesia during surgery. Conclusions It is possible to differentiate a resting state from sustained anesthesia, replicating previous findings with conventional technologies. These results pave the way to the use of portable technologies such as the OpenBCI tool, to explore the brain dynamics during anesthesia.


Resumen Introducción El análisis de la actividad eléctrica cerebral mediante electrodos ubicados sobre el cuero cabelludo con electroencefalografía (EEG) podría permitir conocer la profundidad anestésica de un paciente durante cirugía. Sin embargo, los equipos de EEG convencionales, por su precio y tamaño, no son una alternativa práctica en quirófanos y los equipos comerciales usados en cirugía no permiten acceder a la actividad eléctrica. Disponer de tecnologías portables y de bajo costo aumentaría el número de investigaciones sobre la actividad cerebral bajo anestesia general y facilitaría la búsqueda de nuevos marcadores para la profundidad anestésica. Objetivo Evaluar la capacidad de una tecnología EEG portable de adquirir ritmos cerebrales relacionados con el estado consciente y el estado de anestesia general de pacientes en cirugía anestesiados con propofol. Métodos Estudio observacional de corte transversal en el que se analizaron datos de 10 registros EEG obtenidos mediante tecnología portable y de bajo costo OpenBCI, de pacientes de sexo femenino que fueron sometidas a anestesia general con propofol. La señal obtenida de los electrodos frontales se analizó mediante análisis espectral y se contrastaron los resultados con lo descrito en la literatura. Resultados La señal obtenida con electrodos frontales, especialmente el ritmo α, permitió diferenciar el reposo con ojos cerrados y ojos abiertos en estado consciente, del estado de mantenimiento de la anestesia durante cirugía. Conclusiones Se logra la diferenciación de estado de reposo y de mantenimiento de la anestesia replicando hallazgos previos de tecnologías convencionales. Estos resultados abren la posibilidad de utilizar las tecnologías portables como el OpenBCI para investigar la dinámica cerebral durante la anestesia.


Subject(s)
Humans , Spectrum Analysis , Technology , Electroencephalography , Anesthesia, General , Brain Mapping , Propofol , Observational Studies as Topic
17.
Rev. méd. Chile ; 149(5): 689-697, mayo 2021. tab, ilus
Article in Spanish | LILACS | ID: biblio-1389520

ABSTRACT

Background: The crossed cerebro-cerebellar (CCC) activation facilitates the diagnosis of cortical language lateralization, but needs to be explored with language tasks suitable for patients with different age ranges, educational attainment and eventual presence of language deficits. Aim: To determine the effect of demographic variables in the performance of three language tasks in healthy volunteers and to determine the CCC activation of these tasks as a functional magnetic resonance imaging (fMRI) paradigm in brain tumor patients. Material and Methods: The behavioral performance (correct responses and reaction time) of three language tasks (verbal fluency, semantic and phonological decision tasks) was first examined in 76 healthy volunteers balanced by age and educational level. Later, these tasks were implemented as fMRI paradigms to explore CCC language activation of 20 patients with potential diagnosis of brain tumors. Results: The performance of the verbal fluency task was affected by age. The CCC language activation was reproducible with the semantic and phonological tasks. The combination of the tasks determined typical and atypical language lateralization in 60% and 40% of our patients, respectively. Conclusions: The verbal fluency task must be implemented with care as a clinical fMRI paradigm. Our results suggest that semantic and phonological tasks can be a good alternative for brain tumor patients with language deficits.


Subject(s)
Humans , Brain Neoplasms/diagnostic imaging , Language , Brain , Brain Mapping , Magnetic Resonance Imaging , Functional Laterality
18.
Acta Physiologica Sinica ; (6): 446-458, 2021.
Article in Chinese | WPRIM | ID: wpr-887680

ABSTRACT

The pathogenesis of schizophrenia (SCZ) is not yet clear, and the pathological changes of the brain activity remains debatable. There are still numerous unresolved issues and debates regarding the relationship between functional connection of the brain network and the symptoms of SCZ. In this paper, we provide a comprehensive review of recent research progresses on resting-state and task-based brain networks, which covers the symptoms of SCZ. Furthermore, we discuss the relationship between large-scale brain networks and SCZ symptoms, and propose possible future research directions in the field of SCZ diagnosis and treatment.


Subject(s)
Humans , Brain , Brain Mapping , Magnetic Resonance Imaging , Schizophrenia
19.
Acta Physiologica Sinica ; (6): 355-368, 2021.
Article in Chinese | WPRIM | ID: wpr-887674

ABSTRACT

The disorder of brain-gut interaction is an important cause of irritable bowel syndrome (IBS), but the dynamic characteristics of the brain remain unclear. Since there are many shortcomings for evaluating brain dynamic nature in the previous studies, we proposed a new method based on slope calculation by point-by-point analysis of the data from functional magnetic resonance imaging, and detected the abnormalities of brain dynamic changes in IBS patients. The results showed that compared with healthy subjects, there were dynamic changes in the brain for the IBS patients. After correction by false discovery rate (FDR), significant abnormalities were only found in two functional connections of the right posterior cingulate gyrus linked to left middle frontal gyrus, and the right posterior cingulate gyrus linked to left pallidus. The above results of the brain dynamic analysis were totally different from those of the brain static analysis of IBS patients. Our findings provide novel complementary information for illustrating the central nervous mechanism of IBS and may offer a new direction to explore central target for patients with IBS.


Subject(s)
Humans , Brain/diagnostic imaging , Brain Mapping , Gyrus Cinguli/diagnostic imaging , Irritable Bowel Syndrome/diagnostic imaging , Magnetic Resonance Imaging
20.
Frontiers of Medicine ; (4): 562-574, 2021.
Article in English | WPRIM | ID: wpr-888749

ABSTRACT

The protection of language function is one of the major challenges of brain surgery. Over the past century, neurosurgeons have attempted to seek the optimal strategy for the preoperative and intraoperative identification of language-related brain regions. Neurosurgeons have investigated the neural mechanism of language, developed neurolinguistics theory, and provided unique evidence to further understand the neural basis of language functions by using intraoperative cortical and subcortical electrical stimulation. With the emergence of modern neuroscience techniques and dramatic advances in language models over the last 25 years, novel language mapping methods have been applied in the neurosurgical practice to help neurosurgeons protect the brain and reduce morbidity. The rapid advancements in brain-computer interface have provided the perfect platform for the combination of neurosurgery and neurolinguistics. In this review, the history of neurolinguistics models, advancements in modern technology, role of neurosurgery in language mapping, and modern language mapping methods (including noninvasive neuroimaging techniques and invasive cortical electroencephalogram) are presented.


Subject(s)
Humans , Brain Mapping , Brain Neoplasms , Language , Neurosurgery , Neurosurgical Procedures
SELECTION OF CITATIONS
SEARCH DETAIL