Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Natural Product Sciences ; : 255-260, 2019.
Article in English | WPRIM | ID: wpr-760563

ABSTRACT

Piper nigrum L. (Piperaceae), which is a well-known food seasoning, has been used as a traditional medicine for the treatment of vomiting, abdominal pain, diarrhea and anorexia in Korea, China and Japan. Methanol extract from the fruit of P. nigrum was successively partitioned as n-hexane, methylene chloride, ethyl acetate, n-butanol and H₂O soluble fractions. Among those fractions the ethyl acetate soluble fraction showed the most potent DPPH radical scavenging activity, and piperine was isolated from the ethyl acetate fraction. To know the antioxidant activity of piperine, we tested the activities of superoxide dismutase (SOD) and catalase together with oxidative stress tolerance and intracellular ROS level in Caenorhabditis elegans. To investigate whether piperine-mediated increased stress tolerance was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain including CF1553. Consequently, piperine enhanced SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose–dependent manner. Moreover, piperine-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.


Subject(s)
1-Butanol , Abdominal Pain , Anorexia , Caenorhabditis elegans , Caenorhabditis , Catalase , China , Diarrhea , Fruit , Japan , Korea , Medicine, Traditional , Methanol , Methylene Chloride , Oxidative Stress , Piper nigrum , Piper , Seasons , Superoxide Dismutase , Vomiting
2.
Environmental Health and Toxicology ; : e2018006-2018.
Article in English | WPRIM | ID: wpr-713223

ABSTRACT

Oxidative stress was evaluated for anthracene (Ant) and alkyl-Ants (9-methylanthracene [9-MA] and 9,10-dimethylanthracene [9,10-DMA]) in Caenorhabditis elegans to compare changes in toxicity due to the degree of alkylation. Worms were exposed at 1) the same external exposure concentration and 2) the maximum water-soluble concentration. Formation of reactive oxygen species, superoxide dismutase activity, total glutathione concentration, and lipid peroxidation were determined under constant exposure conditions using passive dosing. The expression of oxidative stress-related genes (daf-2, sir-2.1, daf-16, sod-1, sod-2, sod-3 and cytochrome 35A/C family genes) was also investigated to identify and compare changes in the genetic responses of C. elegans exposed to Ant and alkyl-Ant. At the same external concentration, 9,10-DMA induced the greatest oxidative stress, as evidenced by all indicators, except for lipid peroxidation, followed by 9-MA and Ant. Interestingly, 9,10-DMA led to greater oxidative stress than 9-MA and Ant when worms were exposed to the maximum water-soluble concentration, although the maximum water-soluble concentration of 9,10-DMA is the lowest. Increased oxidative stress by alkyl-Ants would be attributed to higher lipid-water partition coefficient and the π electron density in aromatic rings by alkyl substitution, although this supposition requires further confirmation.


Subject(s)
Humans , Alkylation , Ants , Caenorhabditis elegans , Caenorhabditis , Cytochromes , Gene Expression , Glutathione , Lipid Peroxidation , Oxidative Stress , Polycyclic Aromatic Hydrocarbons , Reactive Oxygen Species , Superoxide Dismutase
3.
Biomolecules & Therapeutics ; : 568-575, 2018.
Article in English | WPRIM | ID: wpr-717996

ABSTRACT

In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans (C. elegans) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans, and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.


Subject(s)
Humans , Caenorhabditis elegans , Caenorhabditis , Eating , Ethanol , Zingiber officinale , Heat-Shock Proteins , Lipofuscin , Longevity , Natural Resources , Reactive Oxygen Species , Reproduction , Superoxide Dismutase , Survival Rate
4.
Environmental Health and Toxicology ; : 2018006-2018.
Article in English | WPRIM | ID: wpr-786739

ABSTRACT

Oxidative stress was evaluated for anthracene (Ant) and alkyl-Ants (9-methylanthracene [9-MA] and 9,10-dimethylanthracene [9,10-DMA]) in Caenorhabditis elegans to compare changes in toxicity due to the degree of alkylation. Worms were exposed at 1) the same external exposure concentration and 2) the maximum water-soluble concentration. Formation of reactive oxygen species, superoxide dismutase activity, total glutathione concentration, and lipid peroxidation were determined under constant exposure conditions using passive dosing. The expression of oxidative stress-related genes (daf-2, sir-2.1, daf-16, sod-1, sod-2, sod-3 and cytochrome 35A/C family genes) was also investigated to identify and compare changes in the genetic responses of C. elegans exposed to Ant and alkyl-Ant. At the same external concentration, 9,10-DMA induced the greatest oxidative stress, as evidenced by all indicators, except for lipid peroxidation, followed by 9-MA and Ant. Interestingly, 9,10-DMA led to greater oxidative stress than 9-MA and Ant when worms were exposed to the maximum water-soluble concentration, although the maximum water-soluble concentration of 9,10-DMA is the lowest. Increased oxidative stress by alkyl-Ants would be attributed to higher lipid-water partition coefficient and the π electron density in aromatic rings by alkyl substitution, although this supposition requires further confirmation.


Subject(s)
Humans , Alkylation , Ants , Caenorhabditis elegans , Caenorhabditis , Cytochromes , Gene Expression , Glutathione , Lipid Peroxidation , Oxidative Stress , Polycyclic Aromatic Hydrocarbons , Reactive Oxygen Species , Superoxide Dismutase
5.
Natural Product Sciences ; : 201-208, 2016.
Article in English | WPRIM | ID: wpr-192317

ABSTRACT

Here in this study, we investigated the lifespan-extending effect and underlying mechanism of methanolic extract of Moringa olelifa leaves (MML) using Caenorhabditis elegans (C. elegans) model system. To define the longevity properties of MML we conducted lifespan assay and MML showed significant increase in lifespan under normal culture condition. In addition, MML elevated stress tolerance of C. elegans to endure against thermal, oxidative and osmotic stress conditions. Our data also revealed that increased activities of antioxidant enzymes and expressions of stress resistance proteins were attributed to MML-mediated enhanced stress resistance. We further investigated the involvement of MML on the aging-related factors such as growth, food intake, fertility, and motility. Interestingly, MML significantly reduced growth and egg-laying, suggesting these factors were closely linked with MML-mediated longevity. We also observed the movement of aged worms to estimate the effects of MML on the health span. Herein, MML efficiently elevated motility of aged worms, indicating MML may affect health span as well as lifespan. Our genetic analysis using knockout mutants showed that lifespan-extension activity of MML was interconnected with several genes such as skn-1, sir-2.1, daf-2, age-1 and daf-16. Based on these results, we could conclude that MML prolongs the lifespan of worms via activation of SKN-1 and SIR-2.1 and inhibition of insulin/IGF pathway, followed by DAF-16 activation.


Subject(s)
Caenorhabditis elegans , Caenorhabditis , Eating , Fertility , Longevity , Methanol , Moringa oleifera , Moringa , Osmotic Pressure
6.
Experimental & Molecular Medicine ; : e263-2016.
Article in English | WPRIM | ID: wpr-84905

ABSTRACT

Aging is the most important risk factor for human neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Pathologically, these diseases are characterized by the deposition of specific protein aggregates in neurons and glia, representing the impairment of neuronal proteostasis. However, the mechanism by which aging affects the proteostasis system and promotes protein aggregation remains largely unknown. The short lifespan and ample genetic resources of Caenorhabditis elegans (C. elegans) have made this species a favorite model organism for aging research, and the development of proteinopathy models in this organism has helped us to understand how aging processes affect protein aggregation and neurodegeneration. Here, we review the recent literature on proteinopathies in C. elegans models and discuss the insights we have gained into the mechanisms of how aging processes are integrated into the pathogenesis of various neurodegenerative diseases.


Subject(s)
Humans , Aging , Caenorhabditis elegans , Caenorhabditis , Neurodegenerative Diseases , Neuroglia , Neurons , Protein Aggregates , Risk Factors
7.
Natural Product Sciences ; : 128-133, 2015.
Article in English | WPRIM | ID: wpr-182830

ABSTRACT

Lindera obtusiloba has been widely used as a traditional medicine for the treatment of lots of diseases, including abdominal pain, bruise, and hepatocirrhosis. Here in this study, we elucidated the lifespan-extending effect of methanolic extract of Lindera obtusiloba (MLO) using Caenorhabditis elegans model system. We found that MLO has potent lifespan extension activities under normal culture condition. Then, we determined the protective effects of MLO on the stress conditions such as osmotic, thermal and oxidative stress. To reveal possible mechanism of MLO-mediated lifespan, we further investigated the effect of MLO on the antioxidant enzyme activities and intracellular ROS levels. Our results demonstrated that superoxide dismutase and catalase activities were significantly up-regulated by MLO treatment, resulted in reduced intracellular ROS levels. In this work, we also tested whether MLO-mediated longevity activity was associated with aging-related factors such as food intake and growth. Our data revealed that both of pharyngeal pumping rate and body length were significantly shifted by MLO treatment, indicating these factors were involved in MLO's lifespan-extension effects. Although MLO induces reduction in food intake, the body movement of MLO-fed aged worms was not decreased, compared to untreated control worms, indicating MLO might extend lifespan without affecting healthspan.


Subject(s)
Abdominal Pain , Caenorhabditis elegans , Caenorhabditis , Catalase , Contusions , Eating , Lindera , Longevity , Medicine, Traditional , Methanol , Oxidative Stress , Superoxide Dismutase
8.
Biomolecules & Therapeutics ; : 582-589, 2015.
Article in English | WPRIM | ID: wpr-192180

ABSTRACT

Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan.


Subject(s)
Humans , Acceleration , Aging , Caenorhabditis elegans , Caenorhabditis , DNA Damage , Eating , Heat-Shock Proteins , Hot Temperature , Korea , Longevity , Oxidative Stress , Plants, Medicinal , Superoxide Dismutase , Survival Rate
9.
Environmental Health and Toxicology ; : e2015001-2015.
Article in English | WPRIM | ID: wpr-137575

ABSTRACT

OBJECTIVES: In this study, the effect of tube length and outer diameter (OD) size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs) on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. METHODS: The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. RESULTS: The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. CONCLUSIONS: Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.


Subject(s)
Caenorhabditis elegans , Caenorhabditis , Carbon , Eating , Nanotubes, Carbon
10.
Environmental Health and Toxicology ; : e2015001-2015.
Article in English | WPRIM | ID: wpr-137574

ABSTRACT

OBJECTIVES: In this study, the effect of tube length and outer diameter (OD) size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs) on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. METHODS: The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. RESULTS: The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. CONCLUSIONS: Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.


Subject(s)
Caenorhabditis elegans , Caenorhabditis , Carbon , Eating , Nanotubes, Carbon
11.
Biomolecules & Therapeutics ; : 442-446, 2013.
Article in English | WPRIM | ID: wpr-202596

ABSTRACT

Here in this study, we isolated 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) from Curcuma longa L. and elucidated the lifespanextending effect of PGG using Caenorhabditis elegans model system. In the present study, PGG demonstrated potent lifespan extension of worms under normal culture condition. Then, we determined the protective effects of PGG on the stress conditions such as thermal and oxidative stress. In the case of heat stress, PGG-treated worms exhibited enhanced survival rate, compared to control worms. In addition, PGG-fed worms lived longer than control worms under oxidative stress induced by paraquat. To verify the possible mechanism of PGG-mediated increased lifespan and stress resistance of worms, we investigated whether PGG might alter superoxide dismutase (SOD) activities and intracellular ROS levels. Our results showed that PGG was able to elevate SOD activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner.


Subject(s)
Caenorhabditis elegans , Caenorhabditis , Curcuma , Hot Temperature , Longevity , Oxidative Stress , Paraquat , Prostaglandins G , Superoxide Dismutase , Survival Rate
12.
Nutrition Research and Practice ; : 214-218, 2011.
Article in English | WPRIM | ID: wpr-40491

ABSTRACT

Diets based on carbohydrates increase rapidly the blood glucose level due to the fast conversion of carbohydrates to glucose. High glucose diets have been known to induce many lifestyle diseases. Here, we demonstrated that high glucose diet shortened the lifespan of Caenorhabditis elegans through apoptosis induction. Control adult groups without glucose diet lived for 30 days, whereas animals fed 10 mg/L of D-glucose lived only for 20 days. The reduction of lifespan by glucose diet showed a dose-dependent profile in the concentration range of glucose from 1 to 20 mg/L. Aging effect of high glucose diet was examined by measurement of response time for locomotion after stimulating movement of the animals by touching. Glucose diet decreased the locomotion capacity of the animals during mid-adulthood. High glucose diets also induced ectopic apoptosis in the body of C. elegans, which is a potent mechanism that can explain the shortened lifespan and aging. Apoptotic cell corpses stained with SYTO 12 were found in the worms fed 10 mg/L of glucose. Mutation of core apoptotic regulatory genes, CED-3 and CED-4, inhibited the reduction of viability induced by high glucose diet, which indicates that these regulators were required for glucose-induced apoptosis or lifespan shortening. Thus, we conclude that high glucose diets have potential for inducing ectopic apoptosis in the body, resulting in a shortened lifespan accompanied with loss of locomotion capacity.


Subject(s)
Adult , Animals , Humans , Aging , Apoptosis , Blood Glucose , Cadaver , Caenorhabditis , Caenorhabditis elegans , Carbohydrates , Diet , Genes, Regulator , Glucose , Life Style , Locomotion , Reaction Time
13.
Environmental Health and Toxicology ; : e2011015-2011.
Article in English | WPRIM | ID: wpr-101249

ABSTRACT

OBJECTIVES: Maintaining the constant exposure to hydrophobic organic compouds in acute toxicity tests is one of the most difficult issues in the evaluation of their toxicity and corresponding risks. Passive dosing is an emerging tool to keep constant aqueous concentration because of the overwhelming mass loaded in the dosing phase. The primary objectives of this study were to develop the constant exposure condition for an acute mortality test and to compare the performance of the passive dosing method with the conventional spiking with co-solvent. METHODS: A custom cut polydimethylsiloxane (PDMS) tubing loaded with benzyl butyl phthalate (BBP) was placed in each well of a 24-well plate containing assay medium. The rate of the release of BBP from PDMS was evaluated by measuring the change in the concentration of BBP in the assay medium. The efficiency of maintaining constant exposure condition was also evaluated using a simple two-compartment mass transport model employing a film-diffusion theory. An acute mortality test using 10 C. elegans in each well was conducted for the evaluation of the validity of passive dosing and the comparative evaluation of the passive dosing method and the conventional spiking method. RESULTS: Free concentration in the assay medium reached 95% steady state value within 2.2 hours without test organisms, indicating that this passive dosing method is useful for an acute toxicity test in 24 hours. The measured concentration after the mortality test agreed well with the estimated values from partitioning between PDMS and the assay medium. However, the difference between the nominal and the free concentration became larger as the spiked concentration approached water solubility, indicating the instability of the conventional spiking with a co-solvent. CONCLUSIONS: The results in this study support that passive dosing provides a stable exposure condition for an acute toxicity test. Thus, it is likely that more reliable toxicity assessment can be made for hydrophobic chemicals using passive dosing.


Subject(s)
Benzophenones , Biological Availability , Boronic Acids , Caenorhabditis , Caenorhabditis elegans , Dibutyl Phthalate , Dimethylpolysiloxanes , Phthalic Acids , Solubility , Toxicity Tests, Acute
14.
Chinese Journal of Biotechnology ; (12): 763-771, 2006.
Article in Chinese | WPRIM | ID: wpr-286213

ABSTRACT

Omega-3 polyunsaturated fatty acids (PUFAs) have been broadly investigated and shown to exert many preventive and therapeutic actions besides their important role in maintenances human health and normal development. In mammals, the level of omega-3 PUFAs is relatively too low compared with omega-6 PUFAs, which metabolically and functionally distinct from omega-3 PUFAs and often have important opposing physiological functions. Either the inefficiency of omega-3 PUFAs or the excess of omega-6 PUFAs will cause many healthy problems. So methods have been sought to increase the amount of omega-3 PUFAs and to improve the omega-6/omega-3 ratio in body. In this study, the sFat-1 gene, which putatively encodes a omega-3 fatty acid desaturase, was chemically synthesized according to the sequence from Caenorhabditis briggssae (with codon usage modified), and constructed into a mammal expression vector pcDNA3. 1-sFat1-EGFP. This vector was introduced into CHO cells by lipid-mediated transfection, and it's expression quickly and effectively elevated the cellular omega-3 PUFAs (from 18-carbon to 22-carbon) contents and dramatically improved the ratio of omega-6/omega-3 PUFAs. Cellular lipids extracts from stably selected cells were analyzed with GC-MS and the results showed that amount of total omega-6 PUFAs dropped from 48.97% (in GFP cells)to 35.29% (in sFat-1 cells), whereas the amount of total omega-3 PUFAs increased from 7.86% to 24.02%, respectively. The omega-6/omega-3 ratio also dropped from 6.23 to 1.47. These data demonstrates the Caenorhabditis briggssae omega-3 Fatty Acid Desaturase gene, sFat-1, was synthesized successfully and can produce omega-3 PUFAs by using the corresponding omega-6 PUFAs as substrates, which shows its potential for use in the production of omega-3 PUFAs in transgenic animals.


Subject(s)
Animals , Cricetinae , CHO Cells , Caenorhabditis , Genetics , Cricetulus , Fatty Acid Desaturases , Genetics , Physiology , Fatty Acids , Plasmids , Polymerase Chain Reaction
15.
Genomics & Informatics ; : 15-23, 2005.
Article in English | WPRIM | ID: wpr-126997

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs)are a class of noncoding RNAs found in various organisms such as plants and mammals. However, most of the mRNAs regulated by miRNAs are unknown. Furthermore, miRNA targets in genomes cannot be identified by standard sequence comparison since their complementarity to the target sequence is imperfect in general. In thi s paper, we propose a kernel-based method for the efficient prediction of miRNA targets. To help in distinguishing the false positives from potentially valid targets, we elucidate the features common in experimentally confirmed targets. RESULTS: The performance of our prediction method was evaluated by five-fold cross-validation. Our method showed 0.64 and 0.98 in sensitivity and in specificity, respectively. Also, the proposed method reduced the number of false positives by half compared with TargetScan. We investigated the effect of feature sets on the classification of miRNA targets. Finally, we predicted miRNA targets for several miRNAs in the Caenorhabditis elegans (C.elegans )3'untranslated region (3'UTR) database. CONCLUSIONS: The targets predicted by the suggested method will help in validating more miRNA targets and ultimately in revealing the role of small RNAs in the regulation of genomes. Our algorithm for miRNA target site detection will be able to be improved by additional experimental-knowledge. Also, the increase of the number of confirmed targets is expected to reveal general structural features that can be used to improve their detection.


Subject(s)
Caenorhabditis elegans , Caenorhabditis , Classification , Genome , Mammals , MicroRNAs , RNA , RNA, Messenger , RNA, Untranslated , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL