Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Rev. odontol. UNESP (Online) ; 52: e20230031, 2023. tab
Article in English | LILACS, BBO | ID: biblio-1530300

ABSTRACT

Introdução: A periodontite é um importante problema de saúde pública. Embora o princípio da terapia da periodontite esteja focado principalmente na remoção do biofilme dental e dos fatores associados, sua fisiopatologia registra diferentes eventos moleculares e inflamatórios relacionados ao sistema imunológico do hospedeiro, como a participação do sistema endocanabinoide. Objetivo: Esta revisão teve como objetivo explorar e elucidar os mecanismos e papéis do sistema endocanabinoide na fisiopatologia da periodontite e suas possibilidades para futuras terapias relacionadas. Material e método: Realizou-se uma busca eletrônica na plataforma PubMed por estudos envolvendo a ação do sistema endocanabinoide sobre a periodontite. Resultado: Dezenove estudos clínicos e pré-clínicos foram incluídos nesta revisão narrativa. Conclusão: Os receptores canabinoides tipo 1 e 2 são componentes integrais do sistema endocanabinoide e manifestam-se de várias formas nos tecidos periodontais. As ações e mecanismos através dos quais os receptores canabinoides são ativados em locais saudáveis ou inflamados continuam a ser o foco de investigações em curso. Além disso, os fitocanabinoides e canabinoides sintéticos apresentam potencial como tratamentos, com estudos pré-clínicos indicando benefícios na redução da inflamação e na facilitação da reparação dos tecidos.


Introduction: Periodontitis is a major public health problem. Although the principle of periodontitis therapy is mainly focused on removing dental biofilm and associated factors, its physiopathology enrolls different molecular and inflammatory events related to the host immune system, as the participation of the endocannabinoid system. Objective: This review aimed to explore and elucidate the mechanisms and roles of the endocannabinoid system on periodontitis physiopathology and its possibilities for future related therapies. Material and method: An electronic search was carried out on the PubMed platform for studies involving the action of the endocannabinoid system on periodontitis. Result: Nineteen clinical and preclinical studies were included in this narrative review. Conclusion: Cannabinoid receptors type 1 and 2 are integral components of the endocannabinoid system, manifesting in various forms in the periodontal tissues. The actions and mechanisms through which cannabinoid receptors are activated in healthy or inflamed sites remain the focus of ongoing investigations. Moreover, phytocannabinoids and synthetic cannabinoids show therapeutic potential, with pre-clinical studies indicating benefits in reducing inflammation and facilitating tissue repair


Subject(s)
Periodontitis/physiopathology , Cannabinoids , Public Health , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Inflammation
2.
Biol. Res ; 56: 14-14, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429914

ABSTRACT

The endocannabinoid system (ECS) regulates energy metabolism, has been implicated in the pathogenesis of metabolic diseases and exerts its actions mainly through the type 1 cannabinoid receptor (CB1). Likewise, autophagy is involved in several cellular processes. It is required for the normal development of muscle mass and metabolism, and its deregulation is associated with diseases. It is known that the CB1 regulates signaling pathways that control autophagy, however, it is currently unknown whether the ECS could regulate autophagy in the skeletal muscle of obese mice. This study aimed to investigate the role of the CB1 in regulating autophagy in skeletal muscle. We found concomitant deregulation in the ECS and autophagy markers in high-fat diet-induced obesity. In obese CB1-KO mice, the autophagy-associated protein LC3 II does not accumulate when mTOR and AMPK phosphorylation levels do not change. Acute inhibition of the CB1 with JD-5037 decreased LC3 II protein accumulation and autophagic flux. Our results suggest that the CB1 regulates autophagy in the tibialis anterior skeletal muscle in both lean and obese mice.


Subject(s)
Animals , Mice , Cannabinoids/metabolism , Autophagy/physiology , Muscle, Skeletal/metabolism , Receptor, Cannabinoid, CB1/metabolism , Mice, Inbred C57BL , Mice, Obese
3.
Braz. J. Pharm. Sci. (Online) ; 59: e20555, 2023. tab, graf
Article in English | LILACS | ID: biblio-1429956

ABSTRACT

Abstract Cannabis sativa L. is one of the most consumed drugs in the world and recent studies have associated its use with an increase in the number of traffic accidents in different countries. In many countries, like Brazil, simple and reliable methodologies are still needed for the detection of drugs on site, mainly cannabinoids, considering its prevalence of use and oral fluid (OF) has been proved as an appropriate biological matrix for this purpose. Considering that, this work aims to review previous studies on immunochromatographic devices for on-site detection of cannabinoids in OF, discussing their sensitivity, specificity, cut-offs values and confirmatory methods. This data shows the importance of choosing a screening device and it reinforces the need for its implementation in Brazil. The research was conducted on 5 databases and all original articles, published in the last 10 years, were selected. A total of 32 articles were found, providing data for 17 screening devices of distinct brands. Only 2 screening devices showed satisfactory sensitivity and specificity in the evaluated studies (≥80% and ≥90% respectively). However, it should be considered that the screening devices still have some limitations, such as a higher cut-off than those recommended by international guidelines (cut-off > 2 ng/mL), therefore demonstrating the need for more studies in the area and the importance of confirmatory analysis usually fulfilled by LC-MS/MS, GC-MS/MS or GC-MS. Thus, the screening analyzes should not be evaluated by itself, but in association with confirmatory results and observational traits (behavioral changes), for a better understanding of the traffic scenario


Subject(s)
Cannabinoids/analysis , Triage/classification , Chromatography, Affinity/instrumentation , Dronabinol/agonists , Cannabis/adverse effects , Accidents, Traffic/prevention & control , Substance Abuse Detection/instrumentation
4.
Chinese Medical Sciences Journal ; (4): 29-37, 2023.
Article in English | WPRIM | ID: wpr-981590

ABSTRACT

Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.


Subject(s)
Rats , Animals , Rimonabant/pharmacology , Memory , Sleep, REM , Receptors, Cannabinoid , Cannabinoids/pharmacology
5.
Journal of Integrative Medicine ; (12): 120-129, 2023.
Article in English | WPRIM | ID: wpr-971656

ABSTRACT

Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; 21(2): 120-128.


Subject(s)
Humans , Glioblastoma/pathology , Endocannabinoids/therapeutic use , Brain Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor , Cannabinoids/therapeutic use
6.
Chinese Journal of Internal Medicine ; (12): 841-849, 2023.
Article in Chinese | WPRIM | ID: wpr-985994

ABSTRACT

Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.


Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/pathology , Cannabinoid Receptor Agonists/metabolism , Collagen Type I/pharmacology , Collagen Type III/pharmacology , Hydroxyproline/pharmacology , Sodium Chloride/metabolism , Mice, Inbred C57BL , Lung/pathology , Cannabinoids/adverse effects , Bleomycin/metabolism , Collagen/metabolism , Inflammation/pathology , RNA, Messenger/metabolism
7.
Journal of Forensic Medicine ; (6): 457-464, 2023.
Article in English | WPRIM | ID: wpr-1009378

ABSTRACT

OBJECTIVES@#To establish the GC-MS qualitative and quantitative analysis methods for the synthetic cannabinoids, its main matrix and additives in suspicious electronic cigarette (e-cigarette) oil samples.@*METHODS@#The e-cigarette oil samples were analyzed by GC-MS after diluted with methanol. Synthetic cannabinoids, its main matrix and additives in e-cigarette oil samples were qualitatively analyzed by the characteristic fragment ions and retention time. The synthetic cannabinoids were quantitatively analyzed by using the selective ion monitoring mode.@*RESULTS@#The linear range of each compound in GC-MS quantitative method was 0.025-1 mg/mL, the matrix recovery rate was 94%-103%, the intra-day precision relative standard deviations (RSD) was less than 2.5%, and inter-day precision RSD was less than 4.0%. Five indoles or indazole amide synthetic cannabinoids were detected in 25 e-cigarette samples. The main matrixes of e-cigarette samples were propylene glycol and glycerol. Additives such as N,2,3-trimethyl-2-isopropyl butanamide (WS-23), glycerol triacetate and nicotine were detected in some samples. The content range of synthetic cannabinoids in 25 e-cigarette samples was 0.05%-2.74%.@*CONCLUSIONS@#The GC-MS method for synthesizing cannabinoid, matrix and additive in e-cigarette oil samples has good selectivity, high resolution, low detection limit, and can be used for simultaneous qualitative and quantitative analysis of multiple components; The explored fragment ion fragmentation mechanism of the electron bombardment ion source of indole or indoxamide compounds helps to identify such substances or other compounds with similar structures in cases.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Electronic Nicotine Delivery Systems , Illicit Drugs/analysis , Indazoles/chemistry , Glycerol/analysis , Cannabinoids , Indoles/chemistry , Ions
8.
China Journal of Chinese Materia Medica ; (24): 6294-6306, 2023.
Article in Chinese | WPRIM | ID: wpr-1008828

ABSTRACT

Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.


Subject(s)
Cannabinoid Receptor Modulators/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Receptors, Cannabinoid , Cannabinoids/pharmacology , Anti-Inflammatory Agents/pharmacology
9.
Journal of Integrative Medicine ; (12): 236-244, 2023.
Article in English | WPRIM | ID: wpr-982677

ABSTRACT

Cannabidiol (CBD), a nonpsychotropic phytocannabinoid that was once largely disregarded, is currently the subject of significant medicinal study. CBD is found in Cannabis sativa, and has a myriad of neuropharmacological impacts on the central nervous system, including the capacity to reduce neuroinflammation, protein misfolding and oxidative stress. On the other hand, it is well established that CBD generates its biological effects without exerting a large amount of intrinsic activity upon cannabinoid receptors. Because of this, CBD does not produce undesirable psychotropic effects that are typical of marijuana derivatives. Nonetheless, CBD displays the exceptional potential to become a supplementary medicine in various neurological diseases. Currently, many clinical trials are being conducted to investigate this possibility. This review focuses on the therapeutic effects of CBD in managing neurological disorders like Alzheimer's disease, Parkinson's disease and epilepsy. Overall, this review aims to build a stronger understanding of CBD and provide guidance for future fundamental scientific and clinical investigations, opening a new therapeutic window for neuroprotection. Please cite this article as: Tambe SM, Mali S, Amin PD, Oliveira M. Neuroprotective potential of Cannabidiol: Molecular mechanisms and clinical implications. J Integr Med. 2023; 21(3): 236-244.


Subject(s)
Humans , Cannabidiol/therapeutic use , Neuroprotection , Cannabinoids/therapeutic use , Epilepsy/drug therapy , Cannabis , Neuroprotective Agents/therapeutic use
10.
Neuroscience Bulletin ; (6): 1669-1682, 2023.
Article in English | WPRIM | ID: wpr-1010644

ABSTRACT

The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases, such as depression and anxiety. Meanwhile, the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor (CB1R), which is strongly expressed in the amygdala of non-human primates (NHPs). However, it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases. Here, we investigated the role of CB1R by knocking down the cannabinoid receptor 1 (CNR1) gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA. We found that CB1R knockdown in the amygdala induced anxiety-like behaviors, including disrupted night sleep, agitated psychomotor activity in new environments, and reduced social desire. Moreover, marmosets with CB1R-knockdown had up-regulated plasma cortisol levels. These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets, and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.


Subject(s)
Animals , Callithrix , Receptors, Cannabinoid , Anxiety , Amygdala , Cannabinoids , Phenotype
11.
Rev. Cient. Esc. Estadual Saúde Pública de Goiás Cândido Santiago ; 9 (Ed. Especial, 1ª Oficina de Elaboração de Pareceres Técnicos Científicos (PTC): 9f1-EE3, 2023. ilus, tab, apêndice
Article in Portuguese | LILACS, CONASS, ColecionaSUS, SES-GO | ID: biblio-1524805

ABSTRACT

Uso de canabidiol (CDB) medicinal presente no óleo de canabis. Indicação: Tratamento de crianças portadoras de epilepsia refratária resistente a medicação e síndromes graves decorrentes. Pergunta: O uso do canabidiol em crianças com epilepsia resistente a medicamentos apresentaria diminuição na frequência de crises convulsivas? Objetivo: Investigar a eficácia e a segurança do canabidiol, em comparação a placebo, na manutenção da remissão em crianças com epilepsia refratária. Métodos: Revisão rápida de revisões sistemáticas, por meio de buscas bibliográficas realizadas nas bases PUBMED, SCOPUS, BVS, Cochrane Library. Foram utilizadas estratégias de buscas com vocabulário padronizado e avaliação da qualidade metodológica usando o checklist AMSTAR 2. Resultados: Foram selecionadas duas revisões sistemáticas que atendiam aos critérios de elegibilidade. O CDB quando comparado ao placebo reduziu 50% das convulsões para epilepsia refrataria (RR 1.69 [1.20 ­ 2.36]), para a síndrome de Lennox-Gastaut o RR foi 2.98 (IC 95%, 1.83 - 4.85) e para a síndrome de Dravet o RR foi 2.26 (IC 95% ,1.38 - 3.70). O CDB pode resultar em uma diminuição no apetite em dosagens maiores (RR = 2,10, IC 95% [0,96­4,62], embora não apresente diferença de efeito dos grupos comparadores. Conclusão: Duas revisões sistemáticas recentes o CDB quando comparado ao placebo reduziu 50% das convulsões para epilepsia refrataria e síndromes graves. Entretanto, existem poucos ensaios clínicos publicados na área


: Use of cannabidiol (CBD) present in cannabis oil. Indication: Treatment of children with drug-resistant refractory epilepsy and severe syndromes resulting. Question: Would the use of cannabidiol in children with drug-resistant epilepsy lead to a decrease in seizure frequency? Objective: to investigate the efficacy and safety of cannabidiol, compared to placebos, in maintaining remission in children with refractory epilepsy. Methods: Rapid review of systematic reviews, through a bibliographical search carried out in the PUBMED, SCOPUS, BVS, Cochrane Library databases. Predefined search strategies were followed, and the methodological quality of the included studies was evaluated using the AMSTAR 2 tool. Results: Two systematic reviews were selected, which met the eligibility criteria. CBD when compared to placebo reduce 50% of seizures for refractory epilepsy (RR 1.69, IC 95% [1.20 ­ 2.36]), for Lennox-Gastaut Syndrome the RR was foi 2.98 (IC 95%, 1.83 - 4.85) and for Dravet Syndrome o RR FOI 2.26 (IC 95% ,1.38 - 3.70). CBD may result in appetite decrease using high doses (RR = 2.10, 95% IC [0.96­ 4.62], with no statistical difference. Conclusion: Two recent systematics, CBD, when compared to placebo, presented 50% of seizures for refractory epilepsy and severe syndromes. However, there are few clinical trials published in the area


Subject(s)
Male , Female , Child, Preschool , Child , Cannabidiol/therapeutic use , Drug Resistant Epilepsy/drug therapy , Dronabinol/therapeutic use , Cannabinoids/therapeutic use , Efficacy , Lennox Gastaut Syndrome/drug therapy , Anticonvulsants
12.
Biomédica (Bogotá) ; 42(3): 450-459, jul.-set. 2022. tab
Article in Spanish | LILACS | ID: biblio-1403597

ABSTRACT

El cannabis se ha utilizado desde la antigüedad con fines recreativos y medicinales. Es una fuente muy rica de compuestos químicos, la mayoría denominados fitocannabinoides, que tienen una variedad de efectos fisiológicos, principalmente por su unión a receptores cannabinoides endógenos como el CB1 y CB2, entre otros. El cannabis tiene propiedades terapéuticas potenciales y sus preparaciones se han utilizado como remedios tradicionales para tratar el dolor y la emesis. Los cannabinoides sintéticos se utilizan clínicamente como analgésicos, antiespasmódico, antieméticos y estimulantes del apetito. La toxicidad significativa del cannabis es poco común en los adultos, sin embargo, puede tener múltiples efectos adversos agudos y crónicos. La calidad de la evidencia en este campo se ha visto limitada por la corta duración de los estudios, los reducidos tamaños de las muestras, la falta de grupos de control y la existencia de sesgos en la mayoría de los estudios revisados. En este contexto, son necesarios más estudios de mejor calidad metodológica para apoyar el uso seguro de esta terapia en otras enfermedades. La decisión de incorporar los cannabinoides como terapia en alguna de las condiciones descritas depende de la evidencia, el uso de terapias previas y el tipo de paciente.


Since ancient times cannabis has been used for recreational and medicinal purposes. It is a significant source of chemical compounds, most of them called phytocannabinoids. These compounds have several physiological effects and produce their effects primarily by binding to endogenous cannabinoid receptors such as CB1 and CB2, among others. Cannabis has potential therapeutic properties and its preparations have been used as traditional remedies to treat pain and emesis. Synthetic cannabinoids are used clinically as analgesics, antispastics, antiemetics, and appetite stimulants. Significant cannabis toxicity is rare in adults; however, it can produce countless acute and chronic side effects. The quality of the evidence in this field is limited by the short duration of the trials, poor sample sizes, lack of a control group, and the existence of bias in most of the reviewed studies. Therefore, a larger number of studies with better methodological quality is required to support the safe use of this therapy. The decision to include cannabinoids as a treatment for any of the conditions described will depend on the evidence, the use of previous therapies, and the type of patient.


Subject(s)
Cannabis , Therapeutic Uses , Safety , Cannabinoids , Efficacy , Endocannabinoids
14.
Rev. ciênc. méd., (Campinas) ; 31: e225398, 17 fev. 2022.
Article in Portuguese | LILACS | ID: biblio-1410401

ABSTRACT

A Cannabis possui como subespécie a Cannabis sativa. As plantas do gênero Cannabis possuem propriedades terapêuticas que são oriundas de compostos denominados canabinoides. O objetivo do presente artigo foi evidenciar como procede o uso terapêutico da Cannabis para enfrentamento das doenças. Realizou-se revisão narrativa da literatura com busca nas bases de dados: PubMED, Google Acadêmico com levantamento de artigos que tratavam acerca do uso da Cannabis medicinal para o tratamento de algumas doenças. Canabinoides correlacionam-se a receptores do nosso corpo, influindo nos mecanismos que regulam o organismo. Cannabis possibilita abordar e intervir em determinadas patologias presentes nos pacientes advindo de possuir ações benéficas anticonvulsivantes, anti-inflamatórias, analgésicas, ansiolíticas, antipsicóticas e antitumorais. Em nosso corpo existem os canabinoides ou endocanabinoides, que são similares aos canabinoides naturais ou fitocanabinoides estruturados na Cannabis. O canabidiol e o tetra-hidrocarbinol constituem canabinoides provenientes da Cannabis que podem tecer relação com os canabinoides configurados por nosso próprio corpo. O sistema de endocanabinoides possibilitou averiguar-se acerca do emprego do canabidiol para tratamento de patologias, como: Doença de Parkinson, Autismo e Epilepsia. Concluiu-se que o emprego terapêutico da Cannabis medicinal pode representar recurso que será válido para resolução do problema de saúde, podendo propiciar melhores condições e qualidade de vida aos pacientes portadores de determinadas patologias em que essa droga pode ser utilizada para tratamento.


Cannabis has Cannabis sativa as a subspecies. Cannabis plants have therapeutic properties that come from compounds called cannabinoids. The aim of this article was to show how the therapeutic use of Cannabis to cope with diseases proceeds. A narrative review of the literature was carried out with a search in the following databases: PubMED, Google Scholar with a survey of articles that dealt with the use of medicinal Cannabis for the treatment of some diseases. Cannabinoids correlate to our body's receptors, influencing the mechanisms that regulate the body. Cannabis makes it possible to address and intervene in certain pathologies present in patients arising from having beneficial anticonvulsant, anti-inflammatory, analgesic, anxiolytic, antipsychotic and antitumor actions. In our body there are cannabinoids or endocannabinoids, which are similar to natural cannabinoids or phytocannabinoids structured in Cannabis. Cannabidiol and Tetrahydrocannabinol are cannabinoids derived from Cannabis that can be related to cannabinoids configured by our own body. The endocannabinoid system made it possible to investigate the use of cannabidiol for the treatment of pathologies, such as: Parkinson's Disease, Autism and Epilepsy. It was concluded that the therapeutic use of medicinal Cannabis can represent a resource that will be valid for solving the health problem, providing better conditions and quality of life for patients with certain pathologies in which this drug can be used for treatment.


Subject(s)
Cannabinoids/therapeutic use , Cannabis , Endocannabinoids/therapeutic use
15.
Article in English, Portuguese | LILACS, BDENF | ID: biblio-1398833

ABSTRACT

Objetivo: apresentar o estado da arte das publicações expressas na literatura cientifica mundial sobre a temática, bem como identificar os benefícios terapêuticos da Cannabis medicinal no tratamento dos sintomas das doenças neurodegenerativas especificamente doenças de Parkinson, esclerose múltipla e Alzheimer. Método: trata-se de uma revisão integrativa da literatura, cuja busca de dados foi realizada nas bibliotecas virtuais. Web of Science, Scopus, Medline, Lilacs, Cochrane Library e Scielo no período de agosto a outubro de 2021. Resultados: foram encontrados 158 artigos. Vinte e tres artigos foram selecionados para serem lidos na íntegra e 8 atenderam aos critérios desta revisão. Conclusão: as evidências mostram que embora cada vez mais prescritos ou autorizados, a cannabis medicinal ou os Canabinóides para a doenças neurodegenerativas continuam a ser controversos para muitos médicos.


Objective: to present the state of the art of publications expressed in the world Scientific literature on the subject, as well as to identify the therapeutic benefits of medicinal cannabis in the treatment of neurodegenerative diseases, specifically, Parkinson's diseases, multiple sclerosis and Alzheimer's. Method: this is an integrative literature review, whose data search was performed in virtual librares. Web of Science, Scopus, Medline, Lilacs, Cochrane Library and Scielo from August to October 2021. Results:158 articles were found. Twenty-three articles were selected to be read in full and 8 met the criteria of this review. Conclusion: evidence shows that although increasingly prescribed or authorized, medical cannabis or Cannabinoids for chronic pain remain controversial for many physicians.


Objetivo: presentar el estado del arte de las publicaciones expresadas en la literatura científica mundial sobre el tema, así como identificar los beneficios terapéuticos del cannabis medicinal en el tratamiento de enfermedades neurodegenerativas, en concreto, las enfermedades de Parkinson, la esclerosis múltiple y el Alzheimer. Método: se trata de una revisión integradora de la literatura, cuya búsqueda de datos se realizó en bibliotecas virtuales. Web of Science, Scopus, Medline, Lilacs, Cochrane Library y Scielo de agosto a octubre de 2021. Resultados: se encontraron 158 artículos. Se seleccionaron veintitrés artículos para ser leídos en su totalidad y ocho cumplieron los criterios de esta revisión. Conclusión: la evidencia muestra que, aunque cada vez más se prescribe o autoriza, el cannabis medicinal o los cannabinoides para el dolor crónico siguen siendo controvertidos para muchos médicos.


Subject(s)
Humans , Male , Female , Cannabinoids/therapeutic use , Cannabis/drug effects , Neurodegenerative Diseases/drug therapy , Medical Marijuana , Parkinson Disease/therapy , Chronic Pain/therapy , Multiple Sclerosis/therapy
16.
Article in English, Portuguese | LILACS, BDENF | ID: biblio-1398946

ABSTRACT

Objetivo: apresentar o estado da arte das publicações expressas na literatura cientifica mundial sobre a temática, bem como identificar os benefícios terapêuticos da Cannabis medicinal no tratamento da dor. Método: trata-se de uma revisão integrativa da literatura, cuja busca de dados foi realizada nas bibliotecas virtuais. Web of Science, Scopus, Medline, IBECS, Lilacs, Cochrane Library, Emerald Insight e Scielo no período de agosto a outubro de 2021. Resultados: foram encontrados 367 artigos. Quarenta e três artigos foram selecionados para serem lidos na íntegra e 15 atenderam aos critérios desta revisão. Conclusão: as evidências mostram que embora cada vez mais prescritos ou autorizados, a cannabis medicinal ou os Canabinóides para a dor crónica continuam a ser controversos para muitos médicos.


Objective: to present the state of the art of publications expressed in the world scientific literature on the subject, as well as to identify the therapeutic benefits of medicinal cannabis in the treatment of pain. Method: this is an integrative literature review, whose data search was performed in virtual libraries. Web of Science, Scopus, Medline, IBECS, Lilacs, Cochrane Library, Emerald Insight and Scielo from August to October 2021. Results: 367 articles were found. Forty-three articles were selected to be read in full and 15 met the criteria of this review. Conclusion: evidence shows that although increasingly prescribed or authorized, medical cannabis or Cannabinoids for chronic pain remain controversial for many physicians.


Objetivo: presentar el estado del arte de las publicaciones expresadas en la literatura científica mundial sobre el tema, así como identificar los beneficios terapéuticos del cannabis medicinal en el tratamiento del dolor. Método: se trata de una revisión integradora de la literatura, cuya búsqueda de datos se realizó en bibliotecas virtuales. Web of Science, Scopus, Medline, IBECS, Lilacs, Cochrane Library, Emerald Insight y Scielo de agosto a octubre de 2021. Resultados: se encontraron 367 artículos. Se seleccionaron 43 artículos para ser leídos en su totalidad y 15 cumplieron con los criterios de esta revisión. Conclusión: la evidencia muestra que, aunque cada vez más se prescribe o autoriza, el cannabis medicinal o los cannabinoides para el dolor crónico siguen siendo controvertidos para muchos médicos.


Subject(s)
Humans , Male , Female , Cannabinoids/therapeutic use , Chronic Pain/therapy , Medical Marijuana/therapeutic use , Neoplasms/therapy , Cannabis/drug effects
17.
Braz. J. Pharm. Sci. (Online) ; 58: e20161, 2022. tab, graf
Article in English | LILACS | ID: biblio-1403702

ABSTRACT

Abstract Metabolic syndrome (MetS), an epidemic defined as a group of interconnected physiological, biochemistry, clinical, and metabolic factors, directly increases the risk of cardiovascular disease, atherosclerosis, type 2 diabetes, and death. MetS therapy includes diet, physical exercise, and a poly-pharmacological intervention. Cannabis is mainly recognized for its recreational uses and has several medical applications for neurological diseases, due to its hypnotic, anxiolytic, antinociceptive, anti-inflammatory, and anticonvulsant activities. Although several clinical observations in Cannabis smokers suggest metabolic effects, its utility in metabolic disorders is unclear. This review aims to determine under what conditions Cannabis might be useful in the treatment of MetS. Cannabis contains 120 phytocannabinoids, of which Δ9-THC mediates its psychoactive effects. Cannabinoids exert biological effects through interactions with the endocannabinoid system, which modulates several physiologic and metabolic pathways through cannabinoid receptors (CB1/CB2). Signaling through both receptors inhibits neurotransmitter release. In general, endocannabinoid system stimulation in Cannabis smokers and Δ9-THC signaling through CB1 have been implicated in MetS development, obesity, and type 2 diabetes. In contrast, CB1 antagonists and non-psychotropic phytocannabinoids like cannabidiol reduce these effects through interactions with both cannabinoid and non-cannabinoid receptors. These pharmacological approaches represent a source of new therapeutic agents for MetS. However, more studies are necessary to support the therapeutic potential of Cannabis and cannabinoids in metabolic abnormalities


Subject(s)
Cannabis/adverse effects , Metabolic Syndrome/drug therapy , Biochemistry/classification , Cannabinoids/adverse effects , Cardiovascular Diseases , Receptors, Cannabinoid/analysis , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Diabetes Mellitus/pathology , Atherosclerosis/pathology , Anticonvulsants/classification
18.
Rev. Fac. Odontol. (B.Aires) ; 37(86): 1-13, 2022. ilus
Article in Spanish | LILACS | ID: biblio-1414971

ABSTRACT

La evidencia científica presente en la literatura indica que el cannabis puede ser utilizado con fines terapéuticos para tratar distintas afecciones odontológicas. Dado el acceso sencillo a la cavidad bucal, las distintas formulaciones de cannabis pueden aplicarse de forma tópica. La aplicación local de dosis bajas de cannabis ha demostrado alta efectividad para tratar distintas afecciones bucales, constituyendo un tratamiento seguro con baja probabilidad de generar repercusiones sistémicas indeseadas. En la actualidad, está siendo incorporado a materiales convencionales de uso e higiene odontológica con la finalidad de aprovechar sus efectos terapéuticos. El cannabis tiene múltiples usos en odontología: como componen-te de enjuagues bucales y soluciones para la desinfección de conductos radiculares, en tratamientos de trastornos de ansiedad bucal, como complemento en terapias oncológicas, como analgésico para atenuar el dolor inflamatorio y el neuropático, como miorrelajante y condroprotector para tratar trastornos de articulación témporomandibular (ATM) y bruxismo, como osteomodulador para el tratamiento de patologías que comprometen la integridad ósea, como la enfermedad periodontal y la osteoporosis, y para la cicatrización ósea asociada a fracturas, extracciones dentarias e implantes, y como inmunomodulador con potencial terapéutico para tratar patologías autoinmunes como las enfermedades reumáticas. El trata-miento local con cannabis es efectivo, bien tolerado por el paciente y con pocos efectos adversos. Por lo tanto, se puede concluir que el cannabis aporta un enorme abanico de posibilidades terapéuticas para tratar distintas afecciones odontológicas, aunque aún se requiere mayor cantidad de estudios científicos que avalen su utilización en cada situación fisiopatológica particular (AU)


The scientific evidence present in the literature indicates that cannabis can be used for therapeutic purposes to treat different dental conditions. Given the easy access to the oral cavity, the different cannabis formulations can be applied topically. The local application of low doses of cannabis has shown high effectiveness in treating different oral conditions, constituting a safe treatment with a low probability of generating unwanted systemic repercussions. It is currently being incorporated into conventional materials for dental use and hygiene in order to take advantage of its therapeutic effects. Cannabis has multiple uses in dentistry: as a component of mouthwashes and solutions for disinfecting root canals, in the treatment of oral anxiety disorders, as a complement in oncological therapies, as an analgesic to reduce inflammatory and neuropathic pain, as a muscle relaxant and chondroprotective to treat temporomandibular joint disorders and bruxism, as an osteomodulator for the treatment of pathologies that compromise bone integrity, such as periodontal disease and osteoporosis, and or bone healing associated with fractures, dental extractions and implants, and as immunomodulator with therapeutic potential to treat autoimmune pathologies such as rheumatic diseases. Local treatment with cannabis is effective, well tolerated by the patient and with few adverse effects. Local treatment with cannabis is effective, well tolerated by the patient and with few adverse effects. Therefore, it can be concluded that cannabis provides an enormous range of therapeutic possibilities to treat different dental conditions, although more scientific studies are still required to support its use in each particular pathophysiological situation (AU)


Subject(s)
Humans , Dronabinol/therapeutic use , Cannabinoids/therapeutic use , Receptors, Cannabinoid/therapeutic use , Oral Hygiene/instrumentation , Periodontal Diseases/drug therapy , Pulpitis/drug therapy , Trigeminal Neuralgia/drug therapy , Bone Diseases/drug therapy , Facial Pain/drug therapy , Bruxism/drug therapy , Mouth Neoplasms/drug therapy , Rheumatic Diseases/drug therapy , Administration, Oral , Dental Anxiety/drug therapy , Mouth Diseases/drug therapy
19.
Journal of Forensic Medicine ; (6): 595-600, 2022.
Article in English | WPRIM | ID: wpr-984152

ABSTRACT

OBJECTIVES@#To establish a combined high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) method to detect the synthetic cannabinoid CUMYL-PEGACLONE in e-cigarette oil and hair.@*METHODS@#HPLC-MS/MS and GC-MS were used to establish the detection method of CUMYL-PEGACLONE, and the hair of drug-involved persons and the seized e-cigarette oil were detected.@*RESULTS@#The main mass spectrometry characteristic ions m/z of CUMYL-PEGACLONE measured by GC-MS were 91, 179, 197, 254 and 372. CUMYL-PEGACLONE had a good linear relationship in the mass concentration range of 2-50 ng/mL, and the linear correlation coefficient (r) was greater than 0.99. The limit of detection (LOD) of CUMYL-PEGACLONE in hair was 0.01 ng/mg, and the limit of quantitation (LOQ) was 0.02 ng/mg. The LOD of CUMYL-PEGACLONE in e-cigarette oil was 1 ng/mg, and the LOQ was 2 ng/mg. The average recoveries of CUMYL-PEGACLONE under the attempt at high, intermediate and low levels in blank human hair and e-cigarette oil matrix were 98.2%-132.4% and 93.5%-110.6%, and the intraday and intraday precision were 1.2%-12.9% and 0.7%-2.9%. CUMYL-PEGACLONE was detected in the hair of 15 drug-involved persons. Except for 1 person who was lower than LOQ, the concentration of CUMYL-PEGACLONE in the hair of other 14 persons was 0.035-0.563 ng/mg. The mass fraction of CUMYL-PEGACLONE in 2 e-cigarette oil were 0.17% and 0.21%, respectively.@*CONCLUSIONS@#The established HPLC-MS/MS and GC-MS methods are applied to the detection of HPLC-MS/MS in drug-related cases, which provides strong evidence support for the handling authority to quickly investigate these cases, and also provides a reference for the identification of such substances in future.


Subject(s)
Humans , Illicit Drugs/analysis , Tandem Mass Spectrometry , Electronic Nicotine Delivery Systems , Cannabinoids , Hair/chemistry , Limit of Detection , Substance Abuse Detection/methods
SELECTION OF CITATIONS
SEARCH DETAIL