Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
China Journal of Chinese Materia Medica ; (24): 5863-5870, 2023.
Article in Chinese | WPRIM | ID: wpr-1008784

ABSTRACT

This study aims to investigate the effects of baicalein(BAI) on lipopolysaccharide(LPS)-induced human microglial clone 3(HMC3) cells, with a focus on suppressing inflammatory responses and elucidating the potential mechanism underlying the therapeutic effects of BAI on ischemic stroke via modulating the cAMP-PKA-NF-κB/CREB pathway. The findings have significant implications for the application of traditional Chinese medicine in treating cerebral ischemic diseases. First, the safe dosage of BAI was screened, and then an inflammation model was established with HMC3 cells by induction with LPS for 24 h. The cells were assigned into a control group, a model group, and high-, medium-, and low-dose(5, 2.5, and 1.25 μmol·L~(-1), respectively) BAI groups. The levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in cell extracts, as well as the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), and cyclic adenosine monophosphate(cAMP) in the cell supernatant, were measured. Western blot was performed to determine the expression of protein kinase A(PKA), phosphorylated cAMP-response element binding protein(p-CREB), and nuclear factor-kappa B p65(NF-κB p65). Hoechst 33342/PI staining was employed to assess cell apoptosis. High and low doses of BAI were used for treatment in the research on the mechanism. The results revealed that BAI at the concentrations of 10 μmol·L~(-1) and below had no impact on normally cultured HMC3 cells. LPS induction at 200 ng·mL~(-1) for 24 h reduced the SOD activity and increased the MDA content in HMC3 cells. However, 5, 2.5, and 1.25 μmol·L~(-1) BAI significantly increased the SOD activity and 5 μmol·L~(-1) BAI significantly decreased the MDA content. In addition, BAI ameliorated the M1 polarization of HMC3 cells induced by LPS, as indicated by cellular morphology. The results of ELISA demonstrated that BAI significantly lowered the levels of TNF-α, IL-1β, IL-6, and cAMP in the cell supernatant. Western blot revealed that BAI up-regulated the protein levels of PKA and p-CREB while down-regulating the expression of NF-κB p65. Hoechst 33342/PI staining results indicated that BAI mitigated the apoptosis of HMC3 cells. Overall, the results indicated that BAI had protective effects on the HMC3 cells induced by LPS, and could inhi-bit inflammatory response and improve cell apoptosis, which might be related to the regulation of the cAMP-PKA-NF-κB/CREB pathway.


Subject(s)
Humans , NF-kappa B/metabolism , Microglia , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Superoxide Dismutase/metabolism
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 898-906, 2020.
Article in English | WPRIM | ID: wpr-881035

ABSTRACT

Taurochenodeoxycholic acid (TCDCA) is one of the main effective components of bile acid, playing critical roles in apoptosis and immune responses through the TGR5 receptor. In this study, we reveal the interaction between TCDCA and TGR5 receptor in TGR5-knockdown H1299 cells and the regulation of inflammation via the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element binding (CREB) signal pathway in NR8383 macrophages. In TGR5-knockdown H1299 cells, TCDCA significantly activated cAMP level via TGR5 receptor, indicating TCDCA can bind to TGR5; in NR8383 macrophages TCDCA increased cAMP content compared to treatment with the adenylate cyclase (AC) inhibitor SQ22536. Moreover, activated cAMP can significantly enhance gene expression and protein levels of its downstream proteins PKA and CREB compared with groups of inhibitors. Additionally, TCDCA decreased tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-12 through nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activity. PKA and CREB are primary regulators of anti-inflammatory and immune response. Our results thus demonstrate TCDCA plays an essential anti-inflammatory role via the signaling pathway of cAMP-PKA-CREB induced by TGR5 receptor.


Subject(s)
Animals , Humans , Rats , Cell Line , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytokines/metabolism , Inflammation , Macrophages , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Taurochenodeoxycholic Acid/pharmacology
3.
Asian Journal of Andrology ; (6): 400-407, 2019.
Article in English | WPRIM | ID: wpr-1009688

ABSTRACT

Vitamin D deficiency is a common health issue around the world. We therefore evaluated the associations of semen quality with both serum and seminal plasma vitamin D levels and studied the mechanisms underlying these by incubating spermatozoa with 1,25(OH)2D In vitro. Two hundred and twenty-two men were included in our study. Vitamin D was detected using an electrochemiluminescence method. Spermatozoa used for In vitro experiments were isolated by density gradient centrifugation. Positive relationships of serum 25(OH)D with semen volume and seminal plasma fructose were identified. Seminal plasma 25(OH)D level showed no relationship with serum 25(OH)D level, while it was inversely associated with sperm concentration and positively correlated with semen volume and sperm kinetic values. In vitro, sperm kinetic parameters increased after incubation with 1,25(OH)2D, especially upon incubation for 30 min with it at a concentration of 0.1 nmol l-1. Under these incubation conditions, the upward migration of spermatozoa increased remarkably with increasing adenosine triphosphate (ATP) concentration. The concentration of cyclic adenosine monophosphate (cAMP) and the activity of protein kinase A (PKA) were both elevated, and the PKA inhibitor, N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89) reversed the increase of ATP production. The concentrations of cytoplasmic calcium ions and nicotinamide adenine dinucleotide (NADH) were both enhanced, while mitochondrial calcium uniporter (MCU) inhibitor, Ruthenium 360 (Ru360) did not reverse the increase of ATP production. Therefore, seminal plasma vitamin D may be involved in regulating sperm motility, and 1,25(OH)2D may enhance sperm motility by promoting the synthesis of ATP both through the cAMP/PKA pathway and the increase in intracellular calcium ions.


Subject(s)
Adult , Humans , Male , Young Adult , Adenosine Triphosphate/metabolism , Calcium/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Semen/metabolism , Semen Analysis , Signal Transduction/physiology , Sperm Motility/physiology , Spermatozoa/metabolism , Vitamin D/pharmacology , Vitamin D Deficiency/blood , Wit and Humor as Topic
4.
Braz. j. med. biol. res ; 48(7): 588-594, 07/2015. tab
Article in English | LILACS | ID: lil-751349

ABSTRACT

Staphylococcus aureus is highly prevalent among patients with atopic dermatitis (AD), and this pathogen may trigger and aggravate AD lesions. The aim of this study was to determine the prevalence of S. aureus in the nares of pediatric subjects and verify the phenotypic and molecular characteristics of the isolates in pediatric patients with AD. Isolates were tested for antimicrobial susceptibility, SCCmec typing, and Panton-Valentine Leukocidin (PVL) genes. Lineages were determined by pulsed-field gel electrophoresis and multilocus sequence typing (MLST). AD severity was assessed with the Scoring Atopic Dermatitis (SCORAD) index. Among 106 patients, 90 (85%) presented S. aureus isolates in their nares, and 8 also presented the pathogen in their skin infections. Two patients had two positive lesions, making a total of 10 S. aureus isolates from skin infections. Methicillin-resistant S. aureus (MRSA) was detected in 24 (26.6%) patients, and PVL genes were identified in 21 (23.3%), including 6 (75%) of the 8 patients with skin lesions but mainly in patients with severe and moderate SCORAD values (P=0.0095). All 24 MRSA isolates were susceptible to trimethoprim/sulfamethoxazole, while 8 isolates had a minimum inhibitory concentration (MIC) to mupirocin >1024 μg/mL. High lineage diversity was found among the isolates including USA1100/ST30, USA400/ST1, USA800/ST5, ST83, ST188, ST718, ST1635, and ST2791. There was a high prevalence of MRSA and PVL genes among the isolates recovered in this study. PVL genes were found mostly among patients with severe and moderate SCORAD values. These findings can help clinicians improve the therapies and strategies for the management of pediatric patients with AD.


Subject(s)
Animals , Male , Mice , Rats , Kidney Diseases/metabolism , Kidney/metabolism , Podocytes/metabolism , Signal Transduction , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression , Gene Regulatory Networks , Immunoblotting , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Kidney/pathology , Kidney/physiopathology , Microscopy, Electron , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Puromycin , Podocytes/pathology , Podocytes/ultrastructure , Proteomics/methods , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
5.
Mem. Inst. Oswaldo Cruz ; 110(1): 56-64, 03/02/2015. tab, graf
Article in English | LILACS | ID: lil-741619

ABSTRACT

Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+), acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-). All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection.


Subject(s)
Animals , Humans , Mice , Annexin A1/pharmacology , Macrophages/drug effects , Macrophages/immunology , Neutrophils/cytology , Neutrophils/immunology , Apoptosis , Actins/metabolism , Annexin A1/deficiency , Annexin A1/genetics , Annexin A1/immunology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Dexamethasone/pharmacology , In Vitro Techniques , /biosynthesis , Mice, Knockout , Macrophages/metabolism , Peptides , Phagocytosis/drug effects , Transforming Growth Factor beta/biosynthesis
6.
Article in English | IMSEAR | ID: sea-138997

ABSTRACT

Background & objectives: Chapekar established a model of ovarian tumourigenesis in mice by splenic transplantation of ovaries, resulting in sustained luteinizing hormone (LH) levels because of absence of feedback inhibition. There is increasing evidence of the differential response to LH or hCG under various experimental conditions. The effect of sustained hormonal stimulation in long term cultures is sparsely investigated. The study is aimed to determine the role of hCG and LH stress on caprine ovarian granulosa cells and their downstream signaling in short and long term cultures. Methods: To study the response of hCG and LH stress and downstream signaling, short term cultures were set up by exposing goat ovarian granulosa cells in primary cultures to hCG and LH stress (levels beyond their physiological doses) for 5 days (P0). Cells were sub-cultured at sixth day and subjected to prolonged LH/ hCG stress for two weeks in passage 1(P1) (long term cultures). Downstream cell signaling molecules were assessed. Intracellular cAMP was estimated by ELISA. For PKA and PKC, activity assays were performed. pERK protein expressions in short term cultures were assessed by Western blot and flowcytometry; in long term cultures, pERK expression was analyzed by flowcytometry. Results: Differential effects on cell proliferation were observed in long term cultures, where the untreated and hCG exposed cells showed markedly reduced cell proliferation after second week of exposure while LH treated cells continued to proliferate. Different levels of cAMP, PKA, PKC and phosphorylated ERK1/2 were observed on short term and long term LH stimulation. On sustained hormonal stimulation, cAMP levels were significantly (P<0.05) higher in hCG treated cultures as compared to controls and LH treated cultures. LH led to maximal elevation of ERK in long term cultures. Interpretation & Conclusions: As pERK1/2 promotes cellular proliferation, activation of ERK1/2 in LH treated cultures may be responsible for sustained growth. Prolonged LH treatment promoted growth and proliferation in caprine ovarian granulosa cells whereas prolonged exposure to hCG led to elevated levels of cAMP and decreased the rate of proliferation. Defining the signals and second messengers that act as survival or apoptotic mediators may help in elucidation of the mechanisms controlling proliferation or programmed cell death in granulosa cells.


Subject(s)
Animals , Cell Culture Techniques , Cell Proliferation/drug effects , Chorionic Gonadotropin/pharmacology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Goats , Granulosa Cells/drug effects , Luteinizing Hormone/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Primary Cell Culture , Protein Kinase C/metabolism , Signal Transduction/drug effects
7.
Indian J Exp Biol ; 2008 Nov; 46(11): 764-9
Article in English | IMSEAR | ID: sea-61661

ABSTRACT

In the present in vitro study, the involvement of cAMP dependent-protein kinase A (PKA) and calcium-dependent protein kinase C (PKC) in the regulation of forebrain (telencephalon and hypothalamus) tyrosine hydroxylase (TH) activity was demonstrated during the reproductive seasons of the female catfish H. fossilis. In the concentration studies conducted in prespawning phase, cAMP (0.05 nM, 0.5 nM, 1 mM and 2.0 mM) or the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX-0.5-2.0 mM) stimulated enzyme activity. Likewise, the incubation of the enzyme preparations with the cAMP dependent-protein kinase A inhibitor H-89 (1 and 10 microM) and PKC inhibitor calphostin C (cal C; 1 and 10 microM) inhibited enzyme activity in a concentration-dependent manner. In seasonal studies, the incubation of the enzyme preparations with cAMP (1 mM), IBMX (1 mM), H-89 (10 microM) and cal-C (10 microM) produced season-dependent effects on enzyme activity. The stimulatory effect of cAMP and IBMX and the inhibitory effect of H-89 and cal C were greater in the resting and spawning phases. The results suggest the involvement of both signal transduction pathways in TH activation vis-à-vis catecholaminergic activity with a more dominant role by the cAMP-PKA pathway.


Subject(s)
1-Methyl-3-isobutylxanthine/pharmacology , Animals , Brain/enzymology , Calcium/metabolism , Catfishes , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Fossils , Isoquinolines/pharmacology , Naphthalenes/pharmacology , Protein Kinase C/metabolism , Seasons , Signal Transduction , Sulfonamides/pharmacology , Tyrosine 3-Monooxygenase/chemistry
8.
Genet. mol. res. (Online) ; 4(2): 216-231, 30 jun. 2005. ilus, tab
Article in English | LILACS | ID: lil-445290

ABSTRACT

The human fungal pathogen Paracoccidioides brasiliensis is an ascomycete that displays a temperature-dependent dimorphic transition, appearing as a mycelium at 22 degrees C and as a yeast at 37 degrees C, this latter being the virulent form. We report on the in silico search made of the P. brasiliensis transcriptome-expressed sequence tag database for components of signaling pathways previously known to be involved in morphogenesis and virulence in other species of fungi, including Saccharomyces cerevisiae, Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus. Using this approach, it was possible to identify several protein cascades in P. brasiliensis, such as i) mitogen-activated protein kinase signaling for cell integrity, cell wall construction, pheromone/mating, and osmo-regulation, ii) the cAMP/PKA system, which regulates fungal development and virulence, iii) the Ras protein, which allows cross-talking between cascades, iv) calcium-calmodulin-calcineurin, which controls cell survival under oxidative stress, high temperature, and membrane/cell wall perturbation, and v) the target of rapamycin pathway, controlling cell growth and proliferation. The ways in which P. brasiliensis responds to the environment and modulates the expression of genes required for its survival and virulence can be inferred through comparison with other fungi for which this type of data is already available.


Subject(s)
Humans , Expressed Sequence Tags , Paracoccidioides/physiology , Fungal Proteins/metabolism , Transcription, Genetic , Signal Transduction/genetics , Sequence Alignment , Pheromones/metabolism , Fungi/cytology , Fungi/metabolism , Fungi/pathogenicity , Osmosis/physiology , Paracoccidioides/metabolism , Paracoccidioides/pathogenicity , Mitogen-Activated Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , ras Proteins/metabolism , Signal Transduction/physiology
9.
Yonsei Medical Journal ; : 149-154, 2005.
Article in English | WPRIM | ID: wpr-35920

ABSTRACT

Phosphodiesterase (PDE) 4 inhibitors have been shown to induce the cAMP-mediated signaling pathway by inhibiting cAMP hydrolysis. This study investigated the effect of a PDE4 inhibitor on the expression of the inducible cAMP early repressor (ICER), which is an endogenous inhibitor of CRE- mediated transcription, in osteoblastic cells. RT-PCR analysis revealed that rolipram, a PDE4 inhibitor, stimulates the ICER mRNA in a dose dependent manner. The induction of ICER mRNA expression by rolipram was suppressed by the inhibitors of protein kinase A (PKA) and p38 MAPK, suggesting the involvement of PKA and p38 MAPK activation in ICER expression by rolipram. It was previously shown that rolipram induced the expression of TNF-related activation-induced cytokine (TRANCE, also known as RANKL, ODF, or OPGL) in osteoblasts. This paper provides evidences that a transcriptional repressor like ICER might modulate TRANCE mRNA expression by rolipram in osteoblasts.


Subject(s)
Animals , Mice , /antagonists & inhibitors , Animals, Outbred Strains , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA-Binding Proteins/genetics , Gene Expression/drug effects , Osteoblasts/drug effects , Phosphodiesterase Inhibitors/pharmacology , Rolipram/pharmacology , Transcription Factors/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Biol. Res ; 37(4): 521-525, 2004.
Article in English | LILACS | ID: lil-437505

ABSTRACT

Both cardiac and skeletal muscle ryanodine receptors (RyRs) are parts of large complexes that include a number of kinases and phosphatases. These RyRs have several potential phosphorylation sites in their cytoplasmic domains, but the functional consequences of phosphorylation and the identity of the enzymes responsible have been subjects of considerable controversy. Hyperphosphorylation of Ser-2809 in RyR2 (cardiac isoform) and Ser-2843 in RyR1 (skeletal isoform) has been suggested to cause the dissociation of the FK506-binding protein (FKBP) from RyRs, producing "leaky channels," but some laboratories find no relationship between phosphorylation and FKBP binding. Also debated is the identity of the kinases that phosphorylate these serines: cAMP-dependent protein kinase (PKA) versus calmodulin kinase II (CaMKII). Phosphorylation of other targets of these kinases could also alter calcium homeostasis. For example, PKA also phosphorylates phospholamban (PLB), altering the Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity. This review summarizes the major findings and controversies associated with phosphorylation of RyRs.


Subject(s)
Humans , Animals , Calcium-Calmodulin-Dependent Protein Kinases , Calcium/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Phosphotransferases/metabolism , Muscle, Skeletal/enzymology , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphorylation , Homeostasis/physiology , Models, Animal
11.
Biol. Res ; 37(4): 593-602, 2004. graf
Article in English | LILACS | ID: lil-437513

ABSTRACT

Calcium release via intracellular Ca2+ release channels is a central event underpinning the generation of numerous, often divergent physiological processes. In electrically non-excitable cells, this Ca2+ release is brought about primarily through activation of inositol 1,4,5-trisphosphate receptors and typically takes the form of calcium oscillations. It is widely believed that information is carried in the temporal and spatial characteristics of these signals. Furthermore, stimulation of individual cells with different agonists can generate Ca2+ oscillations with dramatically different spatial and temporal characteristics. Thus, mechanisms must exist for the acute regulation of Ca2+ release such that agonist-specific Ca2+ signals can be generated. One such mechanism by which Ca2+ signals can be modulated is through simultaneous activation of multiple second messenger pathways. For example, activation of both the InsP3 and cAMP pathways leads to the modulation of Ca2+ release through protein kinase A mediated phosphoregulation of the InsP3R. Indeed, each InsP3R subtype is a potential substrate for PKA, although the functional consequences of this phosphorylation are not clear. This review will focus on recent advances in our understanding of phosphoregulation of InsP3R, as well as the functional consequences of this modulation in terms of eliciting specific cellular events.


Subject(s)
Animals , Calcium Channels/metabolism , Cytosol/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Calcium Signaling , Calcium Signaling/physiology , Cell Culture Techniques , Parotid Gland , Parotid Gland/physiology , Phosphorylation , Pancreas/cytology , Pancreas
13.
Experimental & Molecular Medicine ; : 179-184, 1999.
Article in English | WPRIM | ID: wpr-158708

ABSTRACT

Heart disease is one of the major cause of death in diabetic patients, but the thogenesis of diabetic cardio-myopathy remains unclear. In this experiment, to sess the significance of G protein signaling pathways in the pathogenesis of abetic cardiomyopathy, we analyzed the expression of G proteins and the tivities of second messenger dependent protein kinases: cAMP-dependent protein nase (PKA), DAG-mediated protein kinase C (PKC), and calmodulin dependent otein kinase II (CaM kinase II) in the streptozotocin induced diabetic rat art. The expression of Galphaq was increased by slightly over 10% (P<0.05) in abetic rat heart, while Galphas, Galphai, and Gbeta remained unchanged. The A activity in the heart did not change significantly but increased by 27%<0.01) in the liver. Insulin treatment did not restore the increased activity the liver. Total PKC activity in the heart was increased by 56% (P<0.01), and sulin treatment did not restore such increase. The CaM kinase II activity in e heart remained at the same level but was slightly increased in the liver 4% increase, P<0.05). These findings of increased expression of Galphaq in the reptozotocin-diabetic rat heart that are reflected by the increased level of C activity and insensitivity to insulin demonstrate that alteration of Galphaq y underlie, at least partly, the cardiac dysfunction that is associated with abetes. Copyright 2000 Academic Press.


Subject(s)
Male , Rats , Animals , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , GTP-Binding Proteins/metabolism , Insulin/pharmacology , Liver/metabolism , Liver/drug effects , Myocardium/metabolism , Protein Kinase C/metabolism , Rats, Sprague-Dawley , Signal Transduction , Streptozocin
14.
Experimental & Molecular Medicine ; : 89-94, 1999.
Article in English | WPRIM | ID: wpr-70471

ABSTRACT

Previously it has been shown that persistent activation of the stimulatory adenylyl cyclase pathway with cholera toxin (CT) downregulates the Gs alpha polypeptide (80%) in a cAMP-independent manner in C6 glioma cells (Shah, 1997). This study was conducted to examine the short and long term effects of CT on the regulation of pertussis toxin-sensitive and -insensitive G proteins and their transcripts in C6 glioma cells. Treatment of C6 cells with CT (100 ng/ml) up to 16 h had no effect on either Gi or Gq/11 alpha proteins. However, prolonged exposure (24-48 h) caused increased expression of Gi (20-30%) and Gq/11 alpha proteins (40%). Urea gradient gels, which can separate Gq alpha and G11 alpha proteins, revealed that prolonged CT treatment increased the expression of both of these G proteins. The CT-mediated enhanced expression of Gq alpha and G11 alpha proteins was accompanied by increased mRNA levels of these proteins as determined by RT/PCR. Cyclic-AMP elevating agents like forskolin (10 microM) and db-cAMP (1 mM) mimicked the effect of CT on Gi but not Gq/11 alpha proteins. These studies show long term cAMP-dependent regulation of Gi and cAMP-independent expression of Gq/11 alpha proteins in C6 glioma cells.


Subject(s)
Rats , Animals , Blotting, Western , Bucladesine/pharmacology , Cholera Toxin/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Colforsin/pharmacology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/biosynthesis , Gene Expression Regulation , Glioma , Membrane Proteins/analysis , RNA, Messenger/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
15.
Experimental & Molecular Medicine ; : 205-213, 1998.
Article in English | WPRIM | ID: wpr-159768

ABSTRACT

Since there have been very few studies on nucleolar signaling, an attempt was made to establish nucleolar signal pathways which link the cell membrane to the nucleolus for the transfer of extracellular signals. Two pathways were studied. One was the G alpha s mediated cAMP pathway where two signal molecules were yielded, including RII and protein kinase A. The other was the G alpha q mediated DAG/IP3 pathway which yields two signals including protein kinase C and IP3/Ca2+. By the studying isolated nucleoli from resting liver, regenerating liver or weak carcinogen thioacetamide treated liver, it was possible to detect protein kinase A (PKA), protein kinase C (PKC) and RII subunits. In addition, CK2 was detected. It was found that external signals transmitted through G protein coupled receptors could reach into the nucleolus and that physical translocation of signal molecules was an integral step involved in membrane-nucleolus linked pathways. When an in vitro assay of the above signal molecules was carried out using [gamma-32P]-ATP, most kinase dependent phosphorylation was via the major CK2 (more than 95%). Therefore, it is suggested that the major CK2 dependent pathway is involved in 'house keeping' for nucleolar integrity and the minor pathways, dependent on PKA, PKC and others, are involved in subtle regulatory mechanisms such as 'extra-house-keeping' activities by nucleolar chromosomal remodeling.


Subject(s)
Male , Rats , Animals , Blotting, Western , Cell Membrane/metabolism , Cell Nucleolus/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , GTP-Binding Proteins/metabolism , Immunoblotting , Liver/metabolism , Liver Neoplasms, Experimental , Models, Biological , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats, Sprague-Dawley , Second Messenger Systems , Signal Transduction , Thioacetamide/pharmacology , Time Factors
16.
Ciênc. cult. (Säo Paulo) ; 45(3/4): 176-80, May-Aug. 1993.
Article in English | LILACS | ID: lil-201864

ABSTRACT

cAMP-dependent protein kinases (PKA) are the primary mediators of cAMP action, binding of cAMP leading to the dissociation of an inactive tetrameric enzyme into a dimer of regulatory (R) subunits and two active catalytic (C) subunit monomers. The catalytic subunits then phosphorylate specific protein substrates, on serine and threonine residues, thereby altering the biochemical properties of these proteins. Changes in cAMP-dependent protein kinase levels have been reported in mammalian cells during differentiation and development, during progression through the cell cycle, and in transformed cells, suggesting a role for PKA in these processes. In lower eukaryotes similar results have been reported. The veast S. cerevisiae for instance, requires correct regulation of cAMP-dependent protein kinase activity for normal progression through the cell cycle, sporulation and starvation-induced growth arrest. Furrthermore, regulatory subunit levels increase 8-fold in stationary-phase yeast cells. In the slime mould D. Discoideum and the aquatic fungus B. Emersonii, nutrient starvation induces cell differentiation and development, and a drastic increase in cAMP-dependent protein kinase subunit levels is observed during these processes.


Subject(s)
Animals , Mice , Cell Differentiation , Eukaryotic Cells/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dictyostelium/metabolism , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL