Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Experimental & Molecular Medicine ; : 313-321, 2011.
Article in English | WPRIM | ID: wpr-168745

ABSTRACT

Persistently activated JAK/STAT3 signaling pathway plays a pivotal role in various human cancers including major carcinomas and hematologic tumors, and is implicated in cancer cell survival and proliferation. Therefore, inhibition of JAK/STAT3 signaling may be a clinical application in cancer therapy. Here, we report that 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo [1,3]oxathiol-4-one (BOT-4-one), a small molecule inhibitor of JAK/STAT3 signaling, induces apoptosis through inhibition of STAT3 activation. BOT-4-one suppressed cytokine (upd)-induced tyrosine phosphorylation and transcriptional activity of STAT92E, the sole Drosophila STAT homolog. Consequently, BOT-4-one significantly inhibited STAT3 tyrosine phosphorylation and expression of STAT3 downstream target gene SOCS3 in various human cancer cell lines, and its effect was more potent in JAK3-activated Hodgkin's lymphoma cell line than in JAK2-activated breast cancer and prostate cancer cell lines. In addition, BOT-4-one-treated Hodgkin's lymphoma cells showed decreased cell survival and proliferation by inducing apoptosis through down-regulation of STAT3 downstream target anti-apoptotic gene expression. These results suggest that BOT-4-one is a novel small molecule inhibitor of JAK3/STAT3 signaling and may have therapeutic potential in the treatment of human cancers harboring aberrant JAK3/STAT3 signaling, specifically Hodgkin's lymphoma.


Subject(s)
Animals , Humans , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Drosophila/enzymology , Drosophila Proteins/antagonists & inhibitors , Enzyme Activation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Janus Kinase 3/antagonists & inhibitors , Lymphoma/enzymology , Phosphorylation/drug effects , STAT Transcription Factors/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/drug effects
2.
J Biosci ; 2007 Sep; 32(6): 1133-8
Article in English | IMSEAR | ID: sea-110932

ABSTRACT

Beta-catenin is the key transducer of Wingless-type MMTV integration site family member (Wnt) signalling, upregulation of which is the cause of cancer of the colon and other tissues. In the absence of Wnt signals, beta-catenin is targeted to ubiquitin-proteasome-mediated degradation. Here we present the functional characterization of E3-ubiquitin ligase encoded by cul4B. RNAi-mediated knock-down of Cul4B in a mouse cell line C3H T10 (1/2) results in an increase in beta-catenin levels. Loss-of-function mutation in Drosophila cul4 also shows increased beta-catenin/Armadillo levels in developing embryos and displays a characteristic naked-cuticle phenotype. Immunoprecipitation experiments suggest that Cul4B and beta-catenin are part of a signal complex in Drosophila, mouse and human. These preliminary results suggest a conserved role for Cul4B in the regulation of beta-catenin levels.


Subject(s)
Animals , Animals, Genetically Modified , Armadillo Domain Proteins/antagonists & inhibitors , Cell Line, Tumor , Cullin Proteins/genetics , Down-Regulation/genetics , Drosophila Proteins/antagonists & inhibitors , Drosophila melanogaster/genetics , Humans , Larva/genetics , Mice , Mice, Inbred C3H , Transcription Factors/antagonists & inhibitors , Ubiquitin-Protein Ligases/physiology , beta Catenin/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL