Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Experimental Neurobiology ; : 658-669, 2019.
Article in English | WPRIM | ID: wpr-785791

ABSTRACT

Anoctamin1 (ANO1) also known as TMEM16A is a transmembrane protein that functions as a Ca²⁺ activated chloride channel. Recently, the structure determination of a fungal Nectria haematococca TMEM16 (nhTMEM16) scramblase by X-ray crystallography and a mouse ANO1 by cryo-electron microscopy has provided the insight in molecular architecture underlying phospholipid scrambling and Ca²⁺ binding. Because the Ca²⁺ binding motif is embedded inside channel protein according to defined structure, it is still unclear how intracellular Ca²⁺ moves to its deep binding pocket effectively. Here we show that EF-hand like region containing multiple acidic amino acids at the N-terminus of ANO1 is a putative site regulating the activity of ANO1 by Ca²⁺ and voltage. The EF-hand like region of ANO1 is highly homologous to the canonical EF hand loop in calmodulin that contains acidic residues in key Ca²⁺-coordinating positions in the canonical EF hand. Indeed, deletion and Ala-substituted mutation of this region resulted in a significant reduction in the response to Ca²⁺ and changes in its key biophysical properties evoked by voltage pulses. Furthermore, only ANO1 and ANO2, and not the other TMEM16 isoforms, contain the EF-hand like region and are activated by Ca²⁺. Moreover, the molecular modeling analysis supports that EF-hand like region could play a key role during Ca²⁺ transfer. Therefore, these findings suggest that EF-hand like region in ANO1 coordinates with Ca²⁺ and modulate the activation by Ca²⁺ and voltage.


Subject(s)
Animals , Mice , Amino Acids, Acidic , Calcium , Calmodulin , Chloride Channels , Cryoelectron Microscopy , Crystallography, X-Ray , EF Hand Motifs , Models, Molecular , Mutagenesis , Nectria , Protein Isoforms
2.
The Korean Journal of Parasitology ; : 81-86, 2018.
Article in English | WPRIM | ID: wpr-742218

ABSTRACT

Four isoforms of calcium binding proteins containing 2 EF hand motifs and a dynein light chain-like domain in the human liver fluke Opisthorchis viverrini, namely OvCaBP1, 2, 3, and 4, were characterized. They had molecular weights of 22.7, 21.6, 23.7, and 22.5 kDa, respectively and showed 37.2–42.1% sequence identity to CaBP22.8 of O. viverrini. All were detected in 2- and 4-week-old immature and mature parasites. Additionally, OvCaBP4 was found in newly excysted juveniles. Polyclonal antibodies against each isoform were generated to detect the native proteins in parasite extracts by Western blot analysis. All OvCaBPs were detected in soluble and insoluble crude worm extracts and in the excretory-secretory product, at approximate sizes of 21–23 kDa. The ion-binding properties of the proteins were analyzed by mobility shift assays with the divalent cations Ca²⁺, Mg²⁺, Zn²⁺, and Cu²+. All OvCaBPs showed mobility shifts with Ca²⁺ and Zn²⁺. OvCaBP1 showed also positive results with Mg²⁺ and Cu²⁺. As tegumental proteins, OvCaBP1, 2, and 3 are interesting drug targets for the treatment of opisthorchiasis.


Subject(s)
Humans , Antibodies , Blotting, Western , Calcium-Binding Proteins , Cations, Divalent , Dyneins , EF Hand Motifs , Electrophoretic Mobility Shift Assay , Fasciola hepatica , Molecular Weight , Opisthorchiasis , Opisthorchis , Parasites , Protein Isoforms
3.
Protein & Cell ; (12): 771-779, 2010.
Article in English | WPRIM | ID: wpr-757442

ABSTRACT

The important and diverse regulatory roles of Ca(2+) in eukaryotes are conveyed by the EF-hand containing calmodulin superfamily. However, the calcium-regulatory proteins in prokaryotes are still poorly understood. In this study, we report the three-dimensional structure of the calcium-binding protein from Streptomyces coelicolor, named CabD, which shares low sequence homology with other known helix-loop-helix EF-hand proteins. The CabD structure should provide insights into the biological role of the prokaryotic calcium-binding proteins. The unusual structural features of CabD compared with prokaryotic EF-hand proteins and eukaryotic sarcoplasmic calcium-binding proteins, including the bending conformation of the first C-terminal α-helix, unpaired ligand-binding EF-hands and the lack of the extreme C-terminal loop region, suggest it may have a distinct and significant function in calcium-mediated bacterial physiological processes, and provide a structural basis for potential calcium-mediated regulatory roles in prokaryotes.


Subject(s)
Amino Acid Sequence , Binding Sites , Calcium , Physiology , Calcium-Binding Proteins , Chemistry , Crystallography, X-Ray , EF Hand Motifs , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid , Streptomyces coelicolor , Structural Homology, Protein , Surface Properties
4.
Chinese Journal of Biotechnology ; (12): 375-380, 2007.
Article in Chinese | WPRIM | ID: wpr-328020

ABSTRACT

The EF-hand superfamily is a large group of proteins which contain EF-hand motif formed by helix-loop-helix. These proteins always have the ability of binding metal ions or forming dimmers. Troponin C, known as having ability of binding Ca2+, is one member of the EF-hand superfamily. Troponin C interacts with troponin I and troponin T, forming a troponin complex which takes part in regulating muscle contraction. It is interesting that troponin C was also found in non-muscular tissue, and its function was proved to be different from that of troponin C found in muscular tissue. To date, a lot of researches about troponin C have been carried out widely. However, most of them focused on vertebrate, seldom were done on invertebrate. Our group carried out a research on troponin C from silkworm, a model organism of insects, aiming to clarify the structure and function of silkworm troponin C. Here, we mainly discuss the characters of the EF-hand superfamily and the classification, structure and function of troponin C . We also introduced our work about silkworm troponin C briefly, hoping of making a little contribution to the research of invertebrate troponin C.


Subject(s)
Animals , Amino Acid Sequence , Binding Sites , Genetics , Bombyx , Genetics , Metabolism , Calcium , Metabolism , EF Hand Motifs , Molecular Sequence Data , Phylogeny , Protein Binding , Troponin C , Classification , Genetics , Metabolism
5.
The Korean Journal of Parasitology ; : 331-341, 2006.
Article in English | WPRIM | ID: wpr-220305

ABSTRACT

Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to 10 micrometer of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.


Subject(s)
Animals , Transfection , Sequence Analysis, DNA , Sequence Alignment , Microscopy, Electron, Transmission , Microfilament Proteins/chemistry , EF Hand Motifs , DNA, Complementary , Culture Media , Cloning, Molecular , Amino Acid Sequence , Actins/metabolism , Acanthamoeba/genetics
SELECTION OF CITATIONS
SEARCH DETAIL